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Abstract

In this study, a queuing model with exponential distribution and inter-service
hypo-exponential distribution with inter-arrival time A parameter was studied.

When the customer arrives in the system, if there are customers in the queue or
service channels, they start to wait in the queue to get service, and the customer is
not allowed to lose. In this model where FIFO method is used as queue discipline,
the diagram shows the number of customers in the system and the transition rate
diagram for the (k,i) showing which phase the client receiving the service is.

Accordingly, the tridiagonal @ matrix and the sub-matrices of the matrix are
constructed. The matrices ¥ and W are calculated with the help of these
submatrices. Neuts' R matrix is obtained by the iteration applied on the R;+q

sequence which is defined as a function of these matrices. The probability vector
@ = 0 from this B matrix m, which is the steady-state subvectors for the solution

of the system of homogeneous linear equations, is computed as
T = (g, My, T2y ey Ty oo ), are obtained based on the initial value m; =1 and

depending on m. The actual probabilities of the system parameters are calculated
by normalizing the solution and numerical analysis.
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On Obtaining Of Ergodicity Results And Performance Measures Of Hypo-Exponential Distributed Queuing
Model With Neuts Matrix-Geometric Method

Key Words: Hypo-Exponential, Neuts Matrix-Geometric, Ergodicity, Perfomance
Measure

HiZMET SURESi HiPO-USTEL DAGILIMA UYAN KUYRUK MODELINDE,
NEUTS’UN MATRIS-GEOMETRIK YONTEMININ SIMULASYON YARDIMI iLE
ERGODIKLIK SONUCLARI VE PERFORMANS OLCULERININ ELDE EDILMESI

Ozet

Bu ¢alismada, varis siiresi 4 parametreli tstel dagilim ve hizmet i¢i Hipo-

Ustel dagilim igeren bir kuyruk modeli incelendi. Miisteri sisteme geldiginde,
kuyrukta veya hizmet kanalinda miisteri varsa, hizmet almak icin kuyrukta
beklemeye baglar ve miisterinin kaybolmasina izin verilmez. FIFO ydnteminin
kuyruk disiplini olarak kullanildigi bu modelde, diyagram sistemde miisteri sayisini
ve hizmet alan istemcinin hangi asamasi oldugunu gosteren (k,i) gegis hizi

diyagramini gosterir. Buna gore, tridiagonal @ matris ve matris alt matrisleri insa
edilmigtir. V' ve W matrisleri bu alt matrislerin yardimu ile hesaplanir. Neuts’un R
matrisi, bu matrislerin bir fonksiyonu olan H;;; sirasi uygulanan yineleme

tarafindan elde edilir. Homojen dogrusal denklemler sisteminin ¢6ziimii i¢in kararli
durumlu alt kiimeler olan bu R matrisi @, olasihik vektéri 7@ =0,

m = (g, Ty, Ma, o, My, .. ) olarak hesaplanir. Ty = 1 baslangic degerine ve Tp’a

bagli olarak elde edilir. Sistem parametrelerinin gercek olasiliklari, ¢ozim ve
sayisal analizlerin normallestirilmesi ile hesaplanir.

Key Words: Hipo-Ustel, Neuts’un Matris-Geometrik Yontemi, Ergodiklik,
Performans Ol¢iimleri

1. INTRODUCTION

In order to model complex queuing systems, phase-type distributions can be created in which
hypo-exponential and hyper-exponential distributions are used together. In this context, R. R. P.
Jackson (1954), one of the first pioneers of phase-type studies, found the distribution of waiting times
and the probabilities of the various numbers of customers with the average number of customers at
each stage of the multi-stage poultry system with Poisson inputs and different service parameters. The
steady state behavior of a discrete time, single channel, first come first served queueing problem
wherein service phases at two consecutive time-marks (defined later) are correlated and the arrivals
occur in General Stream with probabilitiesai (i=0, 1, 2....) at a time-mark, is investigated by R. K.
Rana (1972). Ramaswami, V. and Neuts, M. F. (1980), study the duality of phase-type distributions.
Neuts (1981), has solved the problem by using matrix-geometric method with algorithmic approaches
in phase-stochastic models. J. R. Artalejo and G. Choudhury (2004), examined the steady state

behavior of an M/G/1 queue with repeated attempts in which the server may provide an additional
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second phase of service. A novel approach for obtaining the response time in a discrete-time tandem-
gueue with blocking is presented by Houdt and Alfa (2005). Stewart (2009), analyzed some of the
phase-type queuing systems using the Neuts Matrix-Geometric method. Smaili at al. (2013), studied
on hypo-exponential distribution with different parameters. Zobu M. at al. (2013), handled control of
traffic intensity in hyper-exponential and mixed erlang queueing system with a method based on
SPRT. Saglam at al. (2016), have made the simulation and control of traffic intensity in hypo-
exponential and coxian queueing systems with a method based on sequential probability ratio tests.
Michiel De M. at al. (2017), examined a non-classical discrete-time queueing model where customers

demand variable amounts of work from a server that is able to perform this work at a varying rate.

In our study we also obtained a diagram of the transition rates for the (k, i) pair showing the

number of customers in the system and the phase in which the client receiving the service is located.

Accordingly, the tridiagonal {2 matrix and the sub-matrices of the matrix are constructed. The matrices
IV and W are calculated with the help of these submatrices. Neuts B matrix is obtained by the iteration
applied on the R;+, sequence which is defined as a function of these matrices. The probability vector
@ = 0 from this R matrix m, which is the steady-state subvectors for the solution of the system of
homogeneous linear equations, is computed as = (g, Ty, T2, ..., T, ... ), are obtained based on the
initial value my = 1 and depending on m,. The actual probabilities of the system parameters are

calculated by normalizing the solution.
2. NEUTS MATRIX-GEOMETRIC METHOD

The only probability law, exponential distribution, used in modeling distributions of inter-
arrival times or service times in single service queues. When this is taken together, it reveals a system
called birth-death processes. Transitions from any state in these systems are only neighboring states,
and the structure of the transition matrix is diagonal. But sometimes exponential distribution may not

be enough. In such cases, phase-type distributions provide the possibility to model more general cases.

The transition matrices of the arrival and service mechanisms in the phase queue queuing
systems are expressed as block diagonal and half-birth (QBD) processes. On the other hand, in a
simple birth-death process, the elements below the diagonal depart from the system and the elements
above the diagonal represent client arrivals. In a QBD process, the lower crossover blocks involve a

more complex separation process and a more complex process of arrival.
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In the past, the mathematical techniques used to solve such queuing systems depended on the
use of the z-transform. Today, Neuts matrix-geometric method is more widely used with high-speed
computers and the emergence of efficient algorithms (Stewart, 2009).

In this work, we will discuss how the phase type distribution can be incorporated into single

server queues and analyze the M /Hypo. /1 queuing system using Neuts matrix-geometric method.

2.1. M/Hypo,/1 Queue System

In this queue system, the number of arrivals at any time in the length of & has Poisson with A
and exponential distribution () between consecutive arrivals. Moreover, the service duration is two-

phase and the service duration in each phase has different parameter exponential distribution, and the

total service duration (1) has hypo-exponential distribution. This situation is shown in Fig 1.

Figure 1: M /Hypo, /1 Queuing System.

Arrivals
By
Y
v
Departures

Queue L

Server

Here, both service phases have different parameter exponential distributions, and the phases are

completely independent of each other.

More than one customer cannot get service each time. One service provides each consecutive
service phase to the customer, and then the customer removes it from the system. Probability density

functions of inter-arrival times:

. —-A8 .
£.(6) = {*‘Eﬂ 620, 1)

it happens. Now £: the service period of the first phase and ¥: let be two random variables showing the

service period of the second phase. Suppose that £ has an exponential distribution with the py
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parameter, ¥ has an exponential distribution with the p> parameter, and these two random variables

are independent. The sum of two independent and randomly distributed random variables is also a

random change. For this reason, the probability density function of 7 = £ + y random variable, which

is defined as the total service duration, is defined by the convolution formula;

Hilz o _ _
. (™M —pgmiux) y =) .
f;-;.'[.x]' =H1 —H2 (2)
0 ., d.d

and is indicated by n~Hypa- and the distribution function of 7,

Hi e Ha

Flx)=1—
Hi— Ha Hy — M2

g H¥ oy =0 (3

it happens. Expected value, variance and relative variance of total service life distribution,
respectively;

. 1 1
En)=—+— (4)
1 M2 '
. 1 1
Vﬂ?‘{_?’}} =—=+—= {5}
By Ha
. 2+ pul .
2= _H1THy =1 (6)

T (g + po)?

Laplace transformation is;

=) )

obtained in the form.

Now let's first create a status descriptor for the queue system M /Hypo. /1. Then, in the queue
system M /Hypo,/1, let's record the number of existing customers and the current customer's

servicing phase. Due to the exponential nature of the service period and the time between arrival of
each of the two phases, information about the number of customers in the system and the current
service phase is sufficient to capture the entire history of this system. A state of the system is defined

by the (k,i) binary. Where k{k = 0) represents the number of customers in a single-service system
and i(i = 1,2) represents the current service phase. Eger & = 0 ise i’nin degeri iliskili degildir. If
k = 0,2 — i+ 1indicates the number of phases not yet completed by the customer in the service. The

transition ratio 4, (k,i) to (k + 1,i) when k = 0, when the transition from (k,i) to (k,i+ 1) is
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completed with g4 rate when k = 0 and ¢ < 2, when k = 0, the transition from (k,2) to (k — 1, 1) is

complemented by p;. The transition ratio diagram for M /Hypo /1 is shown in Figure 2:

Figure 2: State Transition Ratio Diagram of the M /Hypo. /1 Queue System.

l ul

In this case it is clear from the viewpoint of the transition diagrams that the transition ratios
have a triangular form with block matrix or QBD process. The transition rates matrix and the reduced

sub-matrices for M /Hypeo, /1 are expressed as follows.
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Here the matrices A4;, i = 0,1,2 are square matrices. Matrices Ay represent service completions.
The top-level diagonal matrix 4, represents service completion with & = 0 and a rate of y, at i < 2
(ie, phase 1). All other elements in A; are equal to zero. The matrices A, represent the number of

arrivals at a rate of A that can occur during service, where k = 0 and i in any phase at any level.

—A4 A 0 0 0 0 0
0| —(A+u) m A 0 0 0
Mo 0 —(A+uz) 0 A 0 0
0 0 0 |—(A+p) m A 0
Q=
0 i 0 0 —(A+us) 0 A
0 0 0 0 0 [A+m) m
0 0 0 Ha 0 0
/—Boo Bano 0 O O \
Bo At A2 O
0= 0O A A A
0 0 A0 A A
0O 0 0 A A
Thus sub-matrices;
_(0 O —(A+py) iy ) 10 .
A”_(y: ﬂ)‘ Al_( 0 —(A+p)/) A“_(ﬂ ,1) ®)
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Bl}l} = {_-‘1}1 Bl}l = {-“;l ﬂ}" Bll} = (H,.,) {g}

is defined as. In the transition rate matrix, the Byp sub-matrix reflects that the sum of the first line must

be zero. Using our matrix-geometric method,

70 =0 (10)
to calculate the solution  constant probability vector of the homogeneous linear equation system.
Constant probability vector;

1t = (T0g, 0y, gy ey Ty ene)
is expressed as. Here, my: 1 % 1 is a vector which indicates the probability that the system is empty.

Also for & = 1,2, ... is a row vector of dimension m,:1 % 2, known as constant state subvectors. R is

the ratio matrix of Neuts, for k = 1,2, ... between consecutive constant subvectors of ,
My = ﬂ:kR {12}

there is a relationship. Thus, the first step in the implementation of the matrix-geometric approach will

be the calculation of the R matrix. Equation (12} is used to find successive steady-state subvectors for

the block triangular matrix @:
Ry =—(V+R}W) , 1=012,.,
where ¥V and IV are respectively the matrices;
-1 -1 -
V == 1‘121‘11 f H"T = Ag.“ql {14}

using equations calculated. The R; sequence is a monotone increasing sequence, with I — o2,
converging to R. The initial value of By = 0 is applied to find Neuts B matrix. However, the solution
of equation (8) is not unique, so it should be normalized so that the sum of the components of the 7

constant probability vector is equal to 1. Normalization process,

1= ﬁﬁzn,{e: ED+anake= 1y + 1y (I — R)te (15)

k=1 k=0

by applying equality performed. Where €: 2 x 1 is a vector of 1 elements.

2.2. Ergodic Results for M /Hypo, /1 Queuing System
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M /Hypo,/1 queueing system is stable; ie the number of customers does not increase
indefinitely. This means that the time between arrivals and service time are in balance. E{4) mean
arrival time and E{5) mean service time when the inter-arrival time 4 is smaller than the service time

L is the equilibrium state:

1 1 : : i
— < == ey Ei5) < ElA 16
can be written as. If E(5) > E(4), then the number of customers in the queue grows forever

and some customers can not get service. Therefore, the steady state probabilities of the system are
undefined and performance measures can not be calculated. The customer must have a service

guarantee, so the equilibrium state of equality (15) must be provided.

2.3. Performance Scales for M/Hypo, /1 Queuing System
The performance measures we have achieved for the M /Hvpo, /1 queuing system up to now

are the stationary probabilities of Markov chains. It is possible to obtain very useful information

directly from these. The probability of finding k customers in the queue system with & = 1, by adding

the components of ;. steady state sub-vector, so,

P = lmelly = [l R*2| Lk = 1,2, .. (17)

can easily be obtained by equality. Here, |[x|l; = ¥,=,|x,| < o= is defined as the norm.

Neuts R matrix can be used to calculate the average number of customers in the queue system

M /Hypo, /1. Thus, the average number of customers in the queue system M /Hypa, /1,
o d
Dk
Elz ar
k=1

d ..
my ﬁ“-f —R)71-1

ey

EW) =) klmlly= ) kllmr], =
k=1

k=1
d i
Hiﬁ(z Rk)

k=1

= |lm (I — R)72ly (18)

1

1

1

obtained as.
The expected value E{N,T} of the number of customers in the queueing is obtained from the
standard formula E{W) of a customer's stay time and the expected value E(W,) of a customer's

queue.
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B(N) = EN) - (19)
. E(N) .
E(W)=—— (20)
A
E(N,
E(w,) = % (21)
3. PRACTICE

Here, the numerical analysis of the M /Hvpo. /1 queueing system is carried out with the help of

Neuts matrix-geometric method and the results obtained from these solutions are interpreted.

In this study, we give the average arrival time of the customers in the application 4 = 1, the
average service time in the first phase is ¢y = 3.5 min, and the average service time in the second
phase is ¢z = 2.5 min. In this case, performance parameters will be calculated and evaluated using
Neuts matrix-geometric method for given parameters M /Hypo./1 queuing system. M/Hypo,/1

gueue system transition rates matrix,

1 0 0 0 0 0

0 -4.5 3.5 1 0 0 0
2.5 0 -3.5 0 1 0 0
0 0 0 -4.5 3.5 1 0
0 25 0 0 -3.5 0 1
0 0 0 0 0 -4.5 -3.5
0 0 0 2.5 0 0 -3.5

is found as. According to the matrices obtained,
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a0=(5 o 4=(%" 55 4= )

. . 0
B[}u} = {—l}_. Bl}j_ = {l ﬂ}: Bll} = (2 5)

sub-matrices can be written. Later;

-1 _ (—0.2222 -02222
A _( 0 —{].285?)

to be of equation (13) the matrices ¥ and W,

_ ~1_ (—02222 —0.2222
V=44 —( 0 —0.285?)

_— -1 _ 0 0
W= Aod, —(—0.5555 —0.5555)

obtained in the form. By using these repeated values given in Eq. (12}, Matlab R2009 program was

used to obtain Neuts ratio matrix R. Ry=0 is the starting value, the matrices obtained in the result of
this 1 st, 2 nd,.. ., and 100 th repetitions are, respectively,

R, _ (02222 0.2222) p. _ (028487 0.2848?)
1= 0 0.2857/" 727 \p.04533 0.33103/)" 7

0.4000 04000
Rio0 = (0.1143 0.4[][][]) =R

it was observed that the B matrix became stationary during the 100¢4 step of the process.

The second step in using the matrix-geometric method is the calculation of the initial vector and

successive constant sub-vectors. This requires my and m; to be present. For this, the system of

homogeneous linear equations given by Eq. (9) is considered and the following equation is written.

/Boo B 0O O O \

Bo A A2 0 O
(Mo Ty, T e, Mgy o) 0 A A A2 O
0 0 A A A
0 0 0 A A

As can be seen from the matrix, two linear equations of the @ constant probability vector are
obtained as follows.

=(0,0,0...,0,...)
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EDBDD + Trj_BlD =0
n’-l}Bl}l + n:j_l‘qj_ + R’:AD =0

Then, to find the constant state sub-vectors of m from equation (11), 5 is written as follows in

mR.

HDBDI} + n‘-lBll} =0

HDBDl + ﬁl-'ql + R’le‘qﬁ =0

{.EI}J n-l} (BJ_I} *'11 + Rt‘"'lg. - {{]Jﬂ}
Here,

A+ RA, = —3.5000 3.5000 )

1.000 —3.5000

then, if all values known in the above equation are written instead,

-1 ‘ 1 0
(mg,my) 0 -35 3.5 = (0,0)
2.5 1 3.5

obtained. The solution of this equation is not the only one. Considering that my is a scalar and
m = |m, m.|:1 %2 dimensional row vector, arbitrarily my =1 in the sense that for the initial
value in the third column of the matrix of coefficients, If regulation is made, the equation system,

1 1 o\

{:EI}J LS n'-lg} 0 -3.5 35 = {{]Jﬂ.l l}

2.5 1 0

turn into a shape. In this case, the solution vector is easily calculated,

(mo,my,,my, ) = (1.0,04,0.4)

found as. Thus, m; vectors with constant state sub-vectors are obtained depending on the initial
condition mg = 1. For this reason, when the normalization process expressed in equation (14) is

applied, the total value of all probabilities obtained from the steady-state subvectors,
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1.9091 1.2?2?) (l

mo +m (I - R)Tle=1+(04 0'4}(03535 1.9091/ \1

): 3.1818

obtained as. By dividing the total value of all possibilities by the constant case probabilities obtained
above, the real possibilities of system parameters,

(g, my,,my, ) = (1/3.1818,0.4/3.1818,0.4/3.1818 )
= (0.3142,0.1257,0.1257 )
is obtained as above. Thus, the only solution for mgy and
my = (0.3142)
m, = (0.1257 0.1257)

found as. The other my+4,(k =1,2,...) probabilities are also calculated for & = 1,2, 3 using the

recurrence formula given in equation {11).

7, =mR = (01257 0.1257) (0.4000 0.4000)

0.1143 0.4000
= (0.06464 0.10056)

my = m,R = (0.03735 0.06608)
my =myR = (0.02249 0.04137) ......

By using this repetitive formula, there is also the fixed state sub-vectors in the case of k = 3.
The likelihood of finding k& = 0,1, 2,... in the queue system with equation (16) is found as follows

with the addition of the components of this steady-state subvector.

Po = Tipg = 0.3142
py = llmlly = my, + m, = 02514
p2 = |lmally = w3, + ma, = 0.1652

p3 = llmslly = m3, + mg, = 0.10348

.(v.b)
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For the probabilities of pp, &k = 0,1,2,... found with the help of real probabilities of the system

parameters obtained as a result of normalization,

As indicated by the equation (15) where E({4) is the average arrival time and E(S) is the

average service time when the average arrival rate 4 is smaller than the average service time u,
E(A)=2=2=1 and E(S) = R . ﬂi: 0.6857, E(S) < E(A) equibilirum state is
A 1 My M= 35 25
provided.
The average number of customers in the system is equal to (17),
E(N) = |lmy (I — R)7?|l, = 5.7851
as obtained.

The mean duration of service (1) in the system, the expected value |E(N,)] of the number of

customers in the queueing from the equation (18), (19) equals the expected value [E(W]] of a

customer's stay in the system and (20) equals, the expected value |E(W; )| of the duration of a

customer's stay in the queue is obtained as follows.

= = 1.458333
_+_
H

(5]

E(N,) = E(N) —g = 5.0993

_ E(N
E(W) = {,:{;} — 57851

E(Ng)
A

= 5.0993

B(w,) =

4. CONCLUSION

In this study, a stochastic queueing system consisting of two-stage, phase-type and serial service
units was studied. In this system, it is assumed that the customers come to the system with the Poisson
flow and A parameter and after finishing the service with the zt; parameter in the first phase and after
completing the service reception with the i, parameter in the second phase. In addition, in this system,
a customer can not go to service in the first and second phase without completing the service, that is,

without leaving the whole system. This two-stage queuing system created under the given assumptions
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is known as the M /Hypo./1 queuing system. The two-stage queuing system that was created was
analyzed by Neuts matrix-geometric method and the performance measures of the system were found
and the theoretical results obtained by an application were supported.

It is assumed that the arrival rate of the customers in the queue system M /Hypo, /1 is the same
as A = 1, the average service time in which the customers received in the first phase is g3 = 3.5 min.
and the average service time in which the customers are in the second phase, iz =2.5 min.
M /Hypo, /1 sub-matrices belonging to the pass rate of the queueing system were created. Based on
the matrices ¥V and W obtained from these submatrices, the simulation values of the R+, sequence are

obtained by Matlab R2009 program. Burada iterasyon sayisi 100 adim olarak alinmistir; because after

about 100 steps the same values have been reached. Later, Ry values of Neuts R matrix are obtained
to form m@ =0 homogeneous linear equations systems and the normalized sub-vectors my's are

obtained by iterations by applying the necessary normalization operations to these equation systems.

Depending on these m;. vectors, the probabilities of any number of customer in the system are found.
According to these findings, the probability that there are no customers in the system is pp = 0.3142,
the probability of being a customer is p; = 0.2514, the probability of having two customers is

p2 = 0.1652 and the probability of having three customers is p3 = 0.10348 and so on.

The average time of arrival for the system was calculated as E{4) =1 min and the average
duration of service E(5) = 0.6857 min. Accordingly, it can be seen that E{5) < E(A) provides the
ergodic condition.

The performance measures of the system are as follows: the average number of customers in the
system is E(N) = 5.7851; average number of customers in the queue E E(N,) = 5.0993; the average
waiting time of a customer in the system is E(IW) = 5.7851; the average waiting time of a customer

in the queue was calculated as E{W,) = 5.0993. E(N) = E(W) and E(N,) = E(W,) are obtained

because 4 = 1 is accepted here.

In this study, it is shown that by using Neuts matrix-geometric method, M /Hypos/1 queuing

system can be analyzed and simulated to obtain the probabilities and performance measures of
customer numbers in the system. It is thought that in the following studies it is possible to record
similar progress by increasing the number of phases in this queue model or applying this method to

other queue models.
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