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Makale Bilgisi 

 
Abstract 

Artificial neural networks can produce solutions for samples that have not been addressed 
before, by generalizing the relationship between inputs and outputs related to a problem from 
existing samples. In the studies conducted in this area, it has been pointed out that the artificial 
neural network models are similar to some statistical methods, while the working principles 
of some of them are almost the same. Because of the similarities between these two disciplines, 
they need to be compared with each other to show how important one is in the development 
of the other. In this study, it is aimed to investigate the usability and effectiveness of artificial 
neural network models in binary classification problems. For this purpose, firstly, artificial 
neural network models are briefly mentioned. Then, the similarities between them and some 
statistical methods were taken into consideration. In the application phase, logistic regression 
analysis, which is frequently used in binary classification problems, and artificial neural 
network models were applied on a data set obtained from patients who consulted the Internal 
Medicine polyclinic of Osmangazi University Health, Application and Research Hospital, and 
the results were compared. According to the results obtained, it was observed that artificial 
neural network models gave better results than logistic regression analysis in binary 
classification problems. 

Keywords: Artificial Neural Networks, Backpropagation, Logistic Regression Model, Binary 
Classification 

 

Yapay Sinir Ağı Modellerinin İstatistiksel Uygulamalardaki 
Kullanılabilirliği ve Etkinliğinin Araştırılması Üzerine Bir Uygulama 

Özet 

Yapay sinir ağları, var olan numunelerden bir problem ile ilgili girdi ve çıktılar arasındaki 
ilişkiyi genelleştirerek önceden ele alınmamış numuneler için çözümler üretebilmektedirler. 
Bu alanda yapılan çalışmalarda yapay sinir ağları modellerinin bazı istatistiksel yöntemlere 
benzerlik gösterdiğine, bazılarının ise çalışma prensiplerinin hemen hemen aynı olduğuna 
dikkat çekilmiştir. Bu iki disiplinin birbirleriyle benzerlikleri nedeniyle, birinin diğerinin 
gelişiminde ne kadar önemli olduğunu göstermek için birbirleriyle karşılaştırılmaları 
gereklidir. Bu çalışmada yapay sinir ağı modellerinin ikili sınıflandırma problemlerinde 
kullanılabilirliği ve etkinliğinin araştırılması amaçlanmıştır. Bu amaçla, ilk olarak kısaca yapay 
sinir ağı modellerinden bahsedilmiş ve bazı istatistiksel yöntemler ile aralarındaki 
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benzerlikler göz önüne alınmıştır. Uygulama aşamasında ise Osmangazi Üniversitesi Eğitim ve 
Uygulama Hastanesi İç Hastalıkları polikliniğine başvuran hastalardan elde edilmiş bir veri 
seti üzerinde iki sınıflı sınıflandırma problemlerinde sıkça kullanılan lojistik regresyon analizi 
ve yapay sinir ağ modelleri uygulanmış, elde edilen sonuçlar karşılaştırılmıştır. Elde edilen 
sonuçlara göre, yapay sinir ağı modelleri ikili sınıflandırma problemlerinde lojistik regresyon 
analizine göre daha iyi sonuçlar verdiği gözlenmiştir. 

Anahtar Kelimeler: Yapay Sinir Ağları, Geriye Yayılım, Lojistik Regresyon Modeli, İkili 
Sınıflandırma 

 

 

1 Introduction 

Artificial neural networks, one of the branches of 
artificial intelligence, are used directly not only in 
artificial intelligence studies but also in many 
branches of science. Today, software developed 
using artificial neural networks can show how it can 
change the future [1,2]. 

In 1943, Warren McCulloch and Walter Pitts created 
the first artificial neuron network. The 1980s were 
a breakthrough period for studies on artificial 
neural networks. Artificial neural networks are 
effectively employed in place of traditional 
techniques in business, finance, industry, and 
education [1].  

In some studies published in the early 1990s, it was 
noted that some artificial neural network models 
and some statistical techniques are similar or even 
the same. Further studies have shown that this is 
not a coincidence, but that these two areas are 
highly correlated. Comparison of artificial neural 
network models and statistical techniques revealed 
that one is important in the development of the 
other. Some scientists suggest that some neural 
network models such as single-layer and multi-
layer may be useful for statistical applications, and 
that some statistical techniques such as estimation 
criteria, confidence intervals, and diagnostic 
methods can be applied to artificial neural network 
applications. Improving communication between 
artificial neural networks and statistical 
methodology provides great benefits for both fields 
[1, 3, 4]. 

The aim of this study is to examine how well 
artificial neural network models work in some 
statistical applications. In order to achieve this, 
artificial neural network models are described, and 
similarities between some artificial neural network 
models and some statistical techniques are 
considered. In the application phase, logistic 
regression analysis, which are frequently used in 

binary classification problems, and artificial neural 
network models, were applied on a data set 
obtained from the health field and the obtained 
results were compared. 

2 Artificial neural networks 

2.1 An artificial neural network 

An artificial neural network is an information 
processing system with characteristics similar to 
those of biological neurons. Artificial neural 
network models have been created based on the 
following assumptions as a result of generalizing 
the mathematical models of human cognitive and 
biological neuron structure: 

 Information processing takes place in many 
simple elements called neurons. 

 Signals occur over connections that provide 
the relationship between neurons. 

 Each link has a weight value. As with 
biological neurons, these weight values are 
multiplied by the signals sent. 

 Every neuron uses an activation function, 
which is often a nonlinear function, to 
produce an output signal. 

Thus, an artificial neural network can be defined as 
a combination of neurons and the connection 
between them (neuron structure), methods for 
calculating weights on connections (learning 
algorithms) and activation function [5, 6, 7]. 

2.2 Components of an artificial neural network 

Artificial neural network models are composed of 
dense interconnections of simple computational 
elements, which ensures a high performance, taking 
into account the known structure of the biological 
nervous system. An artificial neural network model, 
as shown in Figure 1, typically comprises of layers, 
computing components that, in each layer, execute 
tasks comparable to those in human nerve cells and 
can vary in number, and extensive connections 
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between these computational elements across the 
layers. Node, unit, processing element, and artificial 
neuron (or simply neuron) are the names given to 
the computational components utilized in various 
artificial neural network models. 

 

Figure 1. A general neural network model [6]. 

The neuron is the basic processing element of a 
network. All neurons in the network receive one or 
more inputs and give a single output. This output 
can be outputs to the outside of the artificial neural 
network, or it can be used as input to other neurons 
[8]. 

One of the most important elements of an artificial 
neural network is connections. Each link also has a 
weight value. All connections that provide the 
transmission of inputs between neurons in the 
artificial neural network have different weight 
values. In short, the weights represent the 
information required for the neural network to 
solve a problem [9, 10]. 

Layers are formed when neurons come together in 
the same direction. The first layer in the artificial 
neural network is the input layer and it provides the 
outside data to be imported into the artificial neural 
network. The other layer is the output layer, where 
the information is transmitted to the outside. If 
there are layers between the input and output 
layers, they are called hidden layers. An artificial 
neural network does not need to have a hidden 
layer, but can have more than one hidden layer [9]. 

Every neuron has an internal state. This is called the 
activation level and is a function of the input values 
received. Usually, one neuron sends its activation as 
a signal to other neurons. At each stage, a neuron 
only sends a single signal, but this signal can be sent 
to more than one neuron at the same time [8]. 

The y neuron, shown as an example in Figure 2, 
receives input signals from x1, x2 and x3 neurons. The 
activations (output signals) of these neurons are x1, 
x2 and x3, respectively. The weights connecting the y 
neuron with the x1, x2 and x3 neurons are w1, w2 and 
w3, respectively. y_in is the sum of the weighted 
signals from neurons x1, x2 and x3 to the y neuron, 
although it is the network input: 

𝑦𝑖𝑛 = 𝑤1𝑥1 + 𝑤2𝑥2 + 𝑤3𝑥3 (1) 

 

Figure 2. A simple artificial neuron [11]. 

 

The activation of the y neuron is defined as a 
function of the input values of the network and 
different activation functions can be used for this 
function [1]: 

𝑦 = 𝑓(𝑦𝑖𝑛) (2) 

2.3 Activation functions 

The most basic operations to be done in an artificial 
neural network are to collect the weighted input 
values and apply an activation function. Sigmoid 
functions are powerful activation functions. The 
two sigmoid functions that are widely used are 
logistic and hyperbolic tangent functions, because 
the computational load during learning is reduced 
by the relation between the value of the function at 
a given point and the value of its derivative at that 
point [11]. 

The logistic sigmoid function is a sigmoid function 
whose values range from 0 to 1 and is frequently 
used as an activation function for artificial neural 
networks. To emphasize the interval value of the 
function, this function is called binary sigmoid, but 
also called logistic sigmoid [12]. 

The sigmoid logistic function is calculated by the 
formula given in Equation (3) or the formula given 
in Equation (4), which is its derivative. 

𝑓(𝑥) =
1

1 + 𝑒−𝜎𝑥
 (3) 

𝑓′(𝑥) = 𝜎𝑓(𝑥)[1 − 𝑓(𝑥)] (4) 
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Figure 3 shows binary sigmoid curves for different 
values of σ, which is the step parameter of the 
logistic sigmoid function. The logistic sigmoid 
function can be scaled to the appropriate value 
range and thus becomes a function suitable for any 
problem. 

 

Figure 3. The sigmoid logistic function (for σ =1 
and σ =3) [11]. 

2.4 Training the neural network (adjusting the 
weights) 

An important factor that distinguishes different 
neural network characteristics from each other is 
the methods used to adjust the connection weights 
values during their training. For this, there are 
generally two training methods: "supervised 
learning" and "unsupervised learning" [13]. 

In supervised learning, a correct output is given as 
an example of artificial neural networks. According 
to the difference (error) between the desired and 
actual output, the weights of the connections 
between neurons can be adjusted later to obtain the 
most appropriate output. For this reason, the 
supervised learning algorithm needs a “supervisor 
(teacher)”. The delta rule developed by Widrow-
Hoff, the generalized delta rule developed by 
Rumelhart and McClelland, and the 
backpropagation learning algorithm can be given as 
examples of supervised learning algorithms [13]. 

In unsupervised learning, the network develops the 
classification itself according to the output 
information obtained from the sample given as 
input. In these learning algorithms, the desired 
output value does not need to be known. Only input 
information is given during the learning process. 
The network then adjusts the link weights to create 
patterns that show the same characteristics. 
Kohonen's self-organizing maps and adaptive 
resonance theory can be given as examples of 
unsupervised learning [11, 14]. 

Single-layer networks fail to solve inseparable 
problems. In this, scientists have examined multi-

layer artificial neural network models. Using the 
generalized delta rule and nonlinear activation 
function for multi-layer networks, the 
backpropagation method has the ability to perform 
any nonlinear function approximation suitable for 
specific inputs and targets. This method provides 
great opportunities for better forecasting, 
classification and forecasting problems [15]. 

2.4.1 The backpropagation algorithm with 
momentum coefficient 

In backpropagation with momentum coefficient, the 
direction of weight change is the combination of the 
current gradient and the previous gradient. This is 
a modified version of the gradient reduction 
method and is an advantage if some training data 
differ from the majority of the training data. If some 
unconventional data is to be used, it is good to use 
this change with a small learning rate. However, 
although the training data are similar, the speed of 
the approach can be increased using this change. To 
use momentum coefficient, the weights of one or 
previous training samples must be stored [11]. 

For example, in a simple form of backpropagation 
with momentum coefficient, the new weights for the 
training step t+1 are based on the weights at the 
training steps t and t–1. Weight update formulas for 
backpropagation with momentum coefficient are 
given in in Equation (5) and Equation (6). The value 
of the momentum coefficient µ is limited in the 
range of 0–1. 

∆𝑤𝑗𝑘(𝑡 + 1) = 𝛼𝛿𝑘𝑧𝑗 + 𝜇∆𝑤𝑗𝑘(𝑡) (5) 

∆𝑣𝑖𝑗(𝑡 + 1) = 𝛼𝛿𝑗𝑥𝑖 + 𝜇∆𝑣𝑖𝑗(𝑡) (6) 

The momentum coefficient allows the network to 
vary in weight within an acceptable range and, 
when used in conjunction with a small learning rate, 
prevents responses that would lead to large errors 
for any given sample. When momentum coefficient 
is used, the network does not trade in the direction 
of the gradient. It trades in the direction of the 
combination of the aspects of the current and 
previous weight correction [11, 13]. 

2.4.2 Conjugate gradient backpropagation  
algorithm 

In conjugate gradient backpropagation  algorithms, 
a search is usually performed along the conjugate 
directions, which converge faster than the stepwise 
reduction directions. 

Many training algorithms use a learning rate to 
determine the weight update. In most conjugate 
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gradient algorithms, the weight update is done at 
each iteration. A search is made along the conjugate 
gradient directions for this process, which 
minimizes the network performance function. 
There are many search functions. Some search 
functions are well suited for certain training 
functions. 

All conjugate gradient algorithms start searching in 
the opposite direction of the gradient on the first 
iteration: 

𝐩0 = −𝐠0 (7) 

A straight search is performed to determine the best 
length to move along the current search direction: 

𝐱𝑘+1 = 𝐱𝑘 + 𝛼𝑘𝐩𝑘 (8) 

Then the next search direction, which is conjugate 
to the previous search directions, is determined. 
The usual method for determining the new search 
direction is to combine the previous search 
direction with the new stepwise decrease direction: 

𝐩𝑘 = −𝐠𝑘 + 𝛽𝑘𝐩𝑘−1 (9) 

The conjugate gradient has several variants, 
depending on behaves of the calculated constant 𝛽𝑘. 
The Fletcher-Reeves algorithm is one of them. In 
Fletcher-Reeves algorithm, the formula for 
updating weights is given in Equation (10).  This 
equation is the ratio of the square norm of the 
current gradient to the square norm of the previous 
gradient. 

𝛽𝑘 =
𝐠𝑘

𝑇𝐠𝑘

𝐠𝑘−1
𝑇 𝐠𝑘−1

 (10) 

Another variant of the conjugate gradient algorithm 
was proposed by Polak and Ribiére. As in the 
Fletcher-Reeves algorithm, the direction search in 
each iteration is determined by formula is given in 
Equation (9). The constant 𝛽𝑘 in the Polak-Ribière 
update process, is calculated with the Equation 
(12). 

𝛽𝑘 =
∆𝐠𝑘

𝑇𝐠𝑘

𝐠𝑘−1
𝑇 𝐠𝑘−1

 (11) 

The search direction is periodicity with respect to 
the gradient’s negative direction in all conjugate 
gradient algorithms. When the total number of 
repetitions equals the total number of network 
parameters, the standard repetition point is 
reached. However, there are various approaches to 
repetition that can boost training efficiency. One of 

these methods is the one proposed by Powell, which 
builds on Beale's previous methods. In this method, 
processes are restarted if there is a small verticality 
between the current gradient and the previous 
gradient. This is tested by the inequality in Equation 
(10). 

|𝐠𝑘−1
𝑇 𝐠𝑘−1|  ≥ 0.2‖𝐠𝑘‖

2
 (12) 

If this condition is provided, the search direction is 
repeated according to the opposite direction of the 
gradient [10, 12]. 

2.5 Neural network architectures 

The location of neurons in layers and the way they 
connect with neurons in other layers is called 
network architecture. Each neuron has a input 
layer, and the activation function of neurons in this 
layer is equal to the input signal for each neuron. In 
other words, they accept inputs directly without 
applying any function. 

It is often thought that neurons are arranged in 
layers. In general, neurons in the same layer behave 
the same. The main factors that determine the 
behavior of neurons are the activation functions 
and the weights on the connections to which the 
signals are sent. Neurons within each layer usually 
have the same activation function and are 
connected to other neurons by the same connection 
pattern. All neurons in a layer may be fully 
connected to all other neurons, or they may be 
unconnected. If every neuron in one layer (for 
example, the hidden layer) is connected to a neuron 
in another layer, the hidden unit will be connected 
to every output neuron. 

Neural networks are often classified as single-layer 
or multi-layer artificial neural networks. In addition 
to this classification, artificial neural networks with 
a competitive layer can be added. 

When determining the number of layers, the input 
units is not counted as a layer because there is no 
computational operation on them. The number of 
layers in a network is equal to the number of layers 
of weighted connections which connect neurons 
[11]. 

2.5.1 Single-layer neural network models 

A single-layer neural network has one weighted 
connection layer. Often, the units are divided into 
two as the input unit that receives the signals and 
the output units from which the network's response 
is to be received. A typical single-layer neural 
network model is given in Figure 4. 
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Figure 4. A single-layer neural network model [11]. 

In single-layer neural network models, the weights 
that affect one output unit do not affect another 
output unit. This architecture can be used for 
sample classification problems. It makes available 
to take the response for the sample is taken from the 
output units through the input signals produced in 
relation to the sample.  

Many real-world problems require more complex 
architectures and complex training rules, and in 
general, single-layer neural networks are not 
sufficient to solve such problems. However, if the 
conditions are suitable for using these networks, it 
is possible to get accurate results [9, 11]. 

2.5.2 Multi-layer neural network models 

In multi-layer neural networks, there is one or more 
layers between the input units and the hidden units. 
Typically, such network architectures with a 
weighted connection layer between the hidden and 
output units can solve more complex problems than 
single-layer network architectures. Multi-layer 
networks, which can be much more difficult to train, 
can be extremely successful when some single-layer 
networks cannot be trained to solve the problem [9, 
11]. A typical multi-layer neural network model is 
shown in Figure 5: 

 

Figure 5. A two-layer neural network model [11]. 

2.5.3 Neural networks models with a 
competitive layer 

A competitive layer is a form of part of a large 
number of neural networks. Usually, the 
connections between neurons in the competitive 
layer are not shown in the architectural diagram of 
the network. Competitive links have - weights. An 
artificial neural network model with a competitive 
layer is shown in Figure 6: 

 

Figure 6. A neural network model with a 
competitive layer [11]. 

3 Neural networks and statistical models 

In this section, the similarities between neural 
network models and some statistical techniques 
will be considered. As it is known, in regression 
analysis, it is aimed to determine a functional 
relationship between dependent variables and 
independent variables with the help of obtained 
observations, in other words, to find regression 
parameters and to make predictions with using 
these parameters. This process is a problem of 
approximating a (multiple multivariate) function 
given mathematically specific "input" and "output" 
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values. Kolmogorov proved with a theorem that a 
multivariable continuous function can be expressed 
with the help of a finite number of one-variable 
continuous functions. This theorem is also called 
“Kolmogorov's Mapping Neural Network Existence 
Theorem”. This theorem states that any continuous 
function can be precisely described by a 
feedforward neural network with three layers (two 
hidden and output layers). In this respect, multi-
layer neural networks seem to be a good 
approximator, and this leads to the use of neural 
network models in regression analysis [16]. 
Therefore, it is necessary to compare appropriate 
techniques and models for the use of statistical 
techniques and artificial neural network models in 
sample classification problems. In this regard, it is 
of great importance to determine artificial neural 
network models suitable for statistical techniques 
such as discriminant analysis, logistic regression 
etc, and to explain their advantages and 
disadvantages [1,16]. Also there is increasing 
interest in the potential role that data science and 
machine learning can play in healthcare. Machine 
learning encompasses a range of approaches 
ranging from applied statistical methods of 
supervised learning such as logistic regression 
models to more computationally complex models 
such as various types of neural networks [17]. 

3.1 Comparison of appropriate neural network 
and statistics terms and symbols 

Some neural network models are similar or 
identical to some statistical techniques [18]. For this 
purpose, it is necessary to compare the appropriate 
neural network and statistical terms with different 
names. Appropriate terms for both fields are given 
in Table 1. 

Table 1. Appropriate neural network and statistical 
terms [18]. 

Statistical terms Neural network terms 
variables features 
independent variables inputs 
predicted values outputs 
dependent variables targets 
residuals errors 
estimation learning (training) 
estimation criterion error function 
observations sample (training pair) 
Parameter estimates weights 
transformations functional links 
regression supervised learning 
data reduction unsupervised learning 

Some symbols used in the diagram representation 
of artificial neural network models are given in 
Figure 7: 

 

Figure 7. Some symbols used in the diagram 
representation of neural network models [18]. 

Various neural networks can be represented in the 
form of network diagrams. For example, the 
diagram, which is given in Figure 8, illustrates 
neural network and statistical terminology for a 
simple linear regression model. In Figure 8, neural 
network terms are written above the symbols in the 
diagram, and appropriate statistical terms are 
written below. The circles represent the 
observation variables whose name is written inside 
it, and the boxes represent a single or multivariate 
(activation) function. The sign in the box indicates 
the type of function. 

 

Figure 8. Simple linear regression model 
represented in the form of a neural network 

diagram [18]. 

3.2 Logistic regression model 

In the logistic regression model, the expected value 
of the dependent variable y is expressed as E(y), and 
calculated with the formulas given in Equation (13) 
or Equation (14). 

𝐸(𝑦) =
1

1 + 𝑒−[𝑏0+∑ 𝑏𝑖𝑥𝑖
𝑟
𝑖=0 ]

 (13) 

𝐸(𝑦) =
1

1 + 𝑒−𝐱′𝒃
 (14) 

Since y is a random variable that takes values (0,1), 
its expected value E(y) is equal to the probability 
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𝜋 = 𝑝(𝑦 = 1). Accordingly, Equation (14) can be 
written as Equation (15). Here are 𝐱′ =
(1, 𝑥1, … , 𝑥𝑟)  ve 𝐛 = (𝑏0, 𝑏1, … , 𝑏𝑟). 

𝜋 = 𝑝(𝑦 = 1) =
1

1 + 𝑒−𝐱′𝒃
 (15) 

The logistic model can be easily linearized. Let 
Equation (16) be defined to linearize it.  

𝜂 = 𝐱′𝐛 (16) 

𝜂 defined by Equation (16) is a linear estimate and 
is obtained from Equation (15) as Equation (17). 

𝜂 = 𝑙𝑛
𝜋

1 − 𝜋
 (17) 

The transformation given in Equation (17) is called 
the logit transformation for the probability of 𝜋, and 
the ratio of 

𝜋

1−𝜋
  in this transformation is called the 

"odds ratio (OR)". 

The general form of the logistic regression model is 
as given in Equation (18). 

𝑦𝑗 = 𝐸(𝑦𝑗) + 𝜀𝑗  , 𝑗 = 1, 2, … , 𝑛 (18) 

The expected values of the independent 𝑦𝑗 variables 

in Equation (18) are Bernoulli random variables 
given in Equation (19). 

𝐸(𝑦𝑗) = 𝜋𝑗 =
1

1 + 𝑒−𝐱𝐣
′𝐛

 (19) 

In the linear expression 𝜂 = 𝐱′𝐛, the maximum 
likelihood method is applied to estimate the 
parameters. Since each 𝑦𝑗 variable is Bernoulli 

distributed, the probability distribution of each of 
them will be as given in Equation (20) and each 𝑦𝑗 

variable will take the value "0" or "1". 

𝑓𝑗(𝑦𝑗) = 𝜋
𝑗

𝑦𝑗
(1 − 𝜋𝑖)1−𝑦𝑗  , 𝑗 = 1, 2, … , 𝑛 (20) 

Since the variables are independent, the likelihood 
function can be expressed as given in Equation (21). 

𝐿(𝑦1, 𝑦2 , … , 𝑦𝑛 , 𝑏) = ∏ 𝜋
𝑗

𝑦𝑗
(1 − 𝜋𝑖)1−𝑦𝑗

𝑛

𝑗=1

 (21) 

Since it is more convenient to work with log-
likelihood, Equation (21) is obtained if the 
logarithm of both parts of Equation (20) is taken. 

ln 𝐿(𝑦1, 𝑦2, … , 𝑦𝑛 , 𝑏) = ∑ [𝑦𝑗 ln
𝜋𝑗

1−𝜋𝑗
]𝑛

𝑗=1 +

∑ ln(1 − 𝜋𝑗)𝑛
𝑗=1   

(22) 

On the other hand, since 1 − 𝜋𝑗 = [1 + 𝑒𝐱𝐣
′𝐛]

−1

  and 

𝜂𝑗 = ln[𝜋𝑗 (1 − 𝜋𝑗)⁄ ] = 𝐱𝐣
′𝐛, log-likelihood can be 

expressed as Equation (23). 

ln 𝐿(𝑦, 𝑏) = ∑ 𝑦𝑗𝑥𝑖
′𝑏𝑛

𝑗=1 − ∑ ln[1 + 𝑒𝑥′𝑏]𝑛
𝑗=1   (23) 

In the logistic regression model, observations or 
trials are usually repeated for the same level of the 
variable x. if it indicates that 𝑦𝑗 is the j. observation 

is “1” and 𝑛𝑗  is the number of trials in which such 

events are provided, log-likelihood takes the form 
given in Equation (24) 

ln 𝐿(𝑦, 𝑏) = ∑ 𝑦𝑗𝜋𝑗
𝑛
𝑗=1 + ∑ 𝑛𝑗ln(1 − 𝜋𝑗) −𝑛

𝑗=1

∑ 𝑦𝑗 ln(1 − 𝜋𝑗)𝑛
𝑗=1   

(24) 

To find the 𝐛̂  maximum likelihood estimators, the 
numerical search method is applied using Equation 
(24). 

The vector 𝐛̂ is assumed to be the final prediction 
vector. If valid assumptions are provided for the 
model, the linear estimator is 𝛈̂ = 𝐱𝐣

′𝐛̂  when 𝐸(𝐛̂) =

𝐛  and 𝑉𝑎𝑟(𝐛̂) = (𝐗′𝐕−1𝐗)−1 and the fitted value of 

the logistic regression model is usually calculated as 
given in Equation (25) [19, 20]. 

𝑦𝑗̂  = 𝜋̂𝑗 =
1

1 + 𝑒𝛈̂
=

1

1 + 𝑒−𝐱𝐣
′𝐛

 (25) 

3.3 Neural network models vs. logistic 
regression model 

A simple single-layer neural network model with r 
number of input units and an output unit with 
logistic function as activation function is shown in 
Figure 9. In this case, the weighted signal to the 
output unit is as given in Equation (26). 

𝑦_𝑖𝑛 = 𝑏0 + ∑ 𝑏𝑖

𝑟

𝑖=1

𝑥𝑖  (26) 

The logistic function 𝑦 =
1

1+𝑒−𝑦_𝑖𝑛  is applied to this 

signal. The output signal i s calculated by the 
formula given in Equation (27).  

𝑦 =
1

1 + 𝑒−[𝑏0+∑ 𝑏𝑖
𝑟
𝑖=1 𝑥𝑖]

 (27) 
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Figure 9. A single-layer neural network model with 
logistic function as activation function vs. logistic 

regression model [1]. 

If the number of input samples is n, the output signal 

𝑦𝑗 correspond to the j. input sample [𝑥𝑗 =

(𝑥𝑗1, 𝑥𝑗2, … , 𝑥𝑗𝑟) ;  𝑗 = 1, 2, … , 𝑛] is calculated as 

given in Equation (28). Here, 𝑥𝑗𝑖 (𝑗 = 1, 2, … , 𝑛;   𝑖 =

1, 2, … , 𝑟) input variables are independent, and 𝑦𝑗 

(𝑗 = 1, 2, … , 𝑛) output variables are dependent 
variables. 

𝑦𝑗 =
1

1 + 𝑒−[𝑏0+∑ 𝑏𝑖
𝑟
𝑖=1 𝑥𝑗𝑖]

    , 𝑗 = 1, 2, … , 𝑛 (28) 

The model expressed by Equation (28) is similar to 
the logistic regression model by adding the error 
term. According to the samples given in the neural 
network, training is done with the generalized delta 
rule and appropriate weights are found [11]. 

A two-layer neural network model with r input 
units, a hidden layer, and an output unit with a 
logistic function as activation function is shown in 
Figure 10. In this model, there are r neurons in the 
input layer, n neurons in the hidden layer and one 
neuron in the output layer. The weight connecting i. 
input unit to j. hidden layer unit denoted by 𝑏𝑖𝑗 (𝑖 =

1, 2, … , 𝑟) ;  𝑗 = 1, 2, … , 𝑛) and the weight 
connecting j. hidden layer unit to output layer 
denoted by 𝑐𝑗 (𝑗 = 1, 2, … , 𝑛). 𝑏0𝑗 (𝑗 = 1, 2, … , 𝑛) is 

the deviation weights correspond to the hidden 
layer, and 𝑐0 is the deviation weight correspond to 
the output layer. 

Let the activation functions of the output and 
hidden layer be denoted by 𝑓0(. ) and 𝑓ℎ(. ), 
respectively. These functions are logistic functions. 
In this case, for the neural network model shown in 

Figure 10, the network output vector correspond to 
p. [𝑥𝑝 = (𝑥𝑝1, 𝑥𝑝2, … , 𝑥𝑝𝑟) ;  𝑝 = 1, 2, … , 𝑃] input 

sample is calculated with the formula given in 
Equation (29) [11]. 

 

Figure 10. A multi-layer neural network model 
with a hidden layer and logistic function as 

activation function vs. logistic regression model [1] 

4 Application 

In the application phase, the data set of 225 patients 
who applied to the Internal Medicine polyclinic of 
Osmangazi University (OGU) Health, Application 
and Research Hospital was used. Risk factors 
affecting hypertension were investigated through 
the obtained data set. For this purpose, some 
variables thought to be effective on hypertension 
were included in the study, and it was tried to 
determine whether these variables were effective 
on hypertension and their effects on human health 
as a risk factor. The variables used in the data set 
obtained from 225 patients are shown in Table 2. 

Table 2. The variables used in the data set. 

Variable mean±st.error min-max 
age (x1) 61.81±12.035 (30-87) 
height (x2) 166.29±9.634 (140-190) 
weight (x3) 72.58±13,696 (45-110) 
SBP(systolic  
blood pressure) (x4) 

 
147.12±31.683 

 
(80-290) 

DBP(diastolic  
blood pressure) (x5) 

 
86.90±15.071 

 
(50-140) 

HDL(high density  
lipoprotein) (x6) 

 
45.14±13.897 

 
(15-88) 

total cholesterol (x7) 187.04±54.351 (89-414) 
triglyceride (x8) 108.18±70.845 (18-371) 
albumin(x9) 3.81±0,584 (2.1-5.0) 
glucose (x10) 166.55±80.66 (70-440) 
   

gender (x11) (1: male, 2: female) 
smoking (x12) (0: no, 1: yes) 
alcohol use (x13) (0: no, 1: yes) 
exercise (x14) (0: no, 1: yes) 
Heart disease (x15) (0: no, 1: yes) 
hypertension (y) (0: no, 1: yes) 
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Among the variables indicated in Table 2, the 
hypertension variable was considered as the 
dependent variable and the other variables as the 
independent variables. Since the hypertension 
variable has two categories (yes or no), firstly 
binary logistic regression analysis, which is 
frequently used in binary classification problems, 
was applied and then neural network models 
trained with backpropagation algorithm with 
momentum coefficient and conjugate gradient 
backpropagation algorithm were used in the 
classification of the data. Finally, the results of the 
applied logistic regression analysis and the neural 
network models were compared. 

SPSS 11.5 statistical package program was used for 
logistic regression analysis and NeuroSoulitions 
4.21 package program was used for neural network 
model calculations. 

4.1 Classification by logistic regression 
analysis 

The y dependent variable of patients with 
hypertension was taken as 0 for patients without 
hypertension and 1 for patients with hypertension. 
Wald test was used to determine the independent 
variables affecting the hypertension variable, which 
was taken as the dependent variable in the logistic 

regression analysis. 𝑏̂ parameters, standard errors, 
Wald statistics, degrees of freedom (df), significance 

levels (p) and Exp(𝑏̂) for these parameters are given 
in Table 3. 

Table 3. Values obtained as a result of logistic 
regression analysis. 

variable 𝒃̂ st.error Wald df p Exp(𝒃̂) 

constant -10.577 5.119 4.269 1 0.039 0.000 
x1 0.045 0.017 7.419 1 0.006 1.046 
x2 0.029 0.030 0.958 1 0.328 1.030 
x3 0.032 0.017 3.864 1 0.049 1.033 
x4 0.000 0.009 0.003 1 0.959 1.000 
x5 0.035 0.019 3.253 1 0.071 1.035 
x6 0.000 0.015 0.001 1 0.982 1.000 
x7 0.003 0.004 0.572 1 0.449 1.003 
x8 0.000 0.003 0.000 1 0.984 1.000 
x9 -0.508 0.348 2.140 1 0.144 0.601 
x10 0.002 0.002 0.676 1 0.411 1.002 
x11 -1.744 0.538 10.509 1 0.001 0.175 
x12 -0.409 0.428 0.916 1 0.338 0.664 
x13 0.485 0.660 0.540 1 0.462 1.624 
x14 0.362 0.631 0.329 1 0.566 1.436 
x15 -0.473 0.380 1.545 1 0.214 0.623 

Exp(𝑏̂) values given in Table 3 are OR (Odds Ratio) 
values. This value indicates how many times or 
what percentage of the probability the dependent 
variable will be observed with the effect of the 

independent variables. The significance of the 𝑏̂  
coefficients is also evaluated as the significance of 
OR values. Variables with an OR value close to 1 are 
not a significant contributor to the change of the 
dependent variable. If the coefficients of these 
variables are not significant, they are interpreted as 
"the variable is not an important risk factor". If 
there are OR values greater than 1 (provided that 
the coefficient is significant), it is interpreted that 
“the variable is an important risk factor”. Values 
close to zero indicate that the variable is an 
important risk factor, provided that the coefficient 
is significant, but that it is a negatively effective 
factor that causes the dependent variable to have 
low values. According to the OR values obtained, 
women have a 0.175 times higher risk of having 
hypertension than men. In addition, 1 unit increase 
in age increases the risk of hypertension 1.046 
times. Similarly, 1 unit increase in weight increases 
the risk of hypertension 1.033 times, and 1 unit 
increase in diastolic blood pressure increases the 
risk of hypertension 1.035 times. 

Hosmer and Lemeshow suggested using 0.15 or 
0.25 as significance level for the Wald test in logistic 
regression [21, 22]. p=0.15 was taken as the 
significance level in this study. Accordingly, the 
variables affecting the dependent variable with 
significance levels less than 0.15 are x1 (age) 
[p=0.006], x3 (weight) [p=0.049], x5 (DBP) 
[p=0.071], x9 (albumin) [p=0.144] ve x11 (gender) 
[p=0.001]. 

As a result of the logistic regression analysis, the 
estimated model is as given in Equation 30. 

𝑦̂ =
1

1 + 𝑒
−[

−10.577+0.045𝑥1+0.029𝑥2+0.032𝑥3+0.035𝑥5
+0.003𝑥7−0.508𝑥9+0.002𝑥10−1.744𝑥11

−0.409𝑥12+0.485𝑥13+0.362𝑥14−0.473𝑥15

]

 
(30) 

The validity of the estimated model was tested with 
the Hosmer-Lemeshow test. The Hosmer-
Lemeshow chi-square value for the estimation 
model was calculated as 5.599 (p=0.692). Since 
p=0.692>α=0.05, the model was accepted as best fit. 
Accordingly, the coefficient of at least one of the 
independent variables was different from zero, so 
the estimation equation is significance. 

Classification is made by Equation (30). For this 
process, the dependent variable estimation values 
were calculated, and values less than 0.5 were 
assigned a value of "0" and those greater than 0.5 
were assigned a value of "1". These assignment 
values were compared with the observation values 
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and the correct classification rates were calculated. 
The results obtained are given in Table 4. 

Table 4. Classification table for logistic regression 
analysis. 

 estimated values  
hypertension 

no yes total accuracy (%) 

O
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n
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43 39 82 52.4 

y
es

 

21 122 143 85.3 

total 64 161 225 73.3 

As given in Table 4, 82 of 225 patients were not 
actually hypertensive. The remaining 143 patients 
are hypertensive. 43 of 82 patients without 
hypertension were classified with logistic 
regression analysis as correct and 39 of them as 
incorrect, with an accuracy percentage of 52.4%. 
122 of 143 patients with hypertension were 
classified as correct and 21 of them as incorrect, 
with an accuracy rate of 85.3%.  

In the classification process made with logistic 
regression analysis, the overall accuracy rate was 
calculated as 73.3% by correctly classifying 165 of 
225 patients. 

4.2 Classification by neural network models 

For the classification of the data set, a two-layer 
neural network model with 15 units in the input 
layer and one unit in the output layer and one 
hidden layer was established. As a result of the 
trials, it was observed that the best accuracy value 
is observed when the number of units in the hidden 
layer is 7, and the accuracy percentage decreases 
when the number of units in the hidden layer is 
greater than 7. Therefore, the number of units in the 
hidden layer is taken as 7. Since the hypertension 
variable has two categories (yes, no), the sigmoid 
logistic function was used as the activation function 
of the hidden and the output layers. The established 
model is shown in Figure 11: 

 

Figure 11. The model set up in the NeuroSolutions 
4.21 package program. 

In the neural network model shown in Figure 11, 
there are 15 neurons in the input layer, 7 neurons 
in the hidden layer, and one neuron in the output 
layer. The sigmoid logistic function is used as the 
activation functions of the hidden and output layers. 
It has been trained with the backpropagation  
algorithms, which are methods of the supervised 
learning. During the training, two different methods 
were used, namely backpropagation algorithm with 
momentum coefficient and conjugate gradient 
backpropagation algorithm. 

4.2.1 Classification by the backpropagation 
algorithm with momentum coefficient. 

The weights calculated after training the network 
with the backpropagation algorithm with 
momentum coefficient are given in Table 5. 

By using the weights calculated after the network is 
trained, the network output is calculated with the 
Equation (31) (As noted here before, the functions 
𝑓0 ve 𝑓ℎ are sigmoid logistic functions). 

𝑦̂ = 𝑓0 [𝑐0𝑘 + ∑ 𝑐𝑗𝑘𝑓ℎ (𝑏0𝑗 + ∑ 𝑏𝑖𝑗𝑥𝑖

𝑟

𝑖=1
)

𝑛

𝑗=1
] (31) 

The 𝑦̂ values are assigned by giving a value of "0" to 
those less than 0.5 and a value of "1" to those 
greater than 0.5 for the classification process. These 
assignment values were compared with the 
observation values and the correct classification 
rates were calculated. The accuracy percentages 
calculated in the classification process for the data 
set used after the network was trained are given in 
Table 6. 
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Table 5. The weights calculated after training the network with the backpropagation algorithm with 
momentum coefficient. 

 bij weights between input layer and hidden layer  
     j  
i  

1 2 3 4 5 6 7 

1 0.038183 -0.377079 -0.092539 -0.844849 1.088823 0.000232 0.340129 
2 -0.047652 -0.142448 -0.076438 0.206520 -1.179121 -0.472014 -0.325958 
3 -0.018952 -0.426096 -0.585312 -0.207449 0.397902 0.145364 -0.154750 
4 0.014908 -0.077396 -0.932752 0.427744 0.030066 -0.362468 0.054019 
5 0.033981 -0.489262 0.625766 -0.324133 0.689294 0.617243 -0.005147 
6 0.002287 0.120196 0.225298 0.262354 -0.404114 0.168880 0.007833 
7 -0.028441 0.263126 -0.171264 0.148204 -0.341717 0.024915 -0.033381 
8 -0.017017 0.508269 0.384997 -0.008662 -0.759987 -0.511327 -0.215143 
9 -0.003526 -0.018455 -0.599053 -0.484052 -0.683164 -0.286301 -0.071966 

10 0.004560 0.071364 -0.690455 -0.308165 1.074355 -0.147219 -0.066622 
11 0.016332 -0.303747 -0.752405 0.016994 0.582696 0.530000 0.105504 
12 0.021496 0.336081 0.283152 0.030311 0.555092 0.522999 0.293574 
13 0.023933 0.421452 0.730063 -0.042374 -0.011385 -0.303856 0.449919 
14 0.005816 0.514841 -0.918895 0.267335 -0.460008 0.719241 -0.336804 
15 -0.053653 -0.375008 -0.190207 0.348217 -1.206198 -0.020581 -0.566735 

 
cjk weights between hidden layer and output layer 
     j  
k  

1 2 3 4 5 6 7 

1 0.127995 -0.836024 -1.120090 -1.601550 -1.57311 0.837367 1.375225 

Table 6. Classification table for neural network 
model trained with backpropagation algorithm 

with momentum coefficient. 

 estimated values  
hypertension 

no yes total accuracy (%) 

O
b

se
rv

at
io

n
 

 v
al

u
es

 

h
y

p
er

te
n

si
o

n
 

n
o

 

63 19 82 76.8 

y
es

 

12 131 143 91.6 

total 75 150 225 86.2 

As given in Table 6, 82 of 225 patients were not 
actually hypertensive. The remaining 143 patients 
are hypertensive. 63 of 82 patients without 
hypertension were classified as correct and 19 of 
them as incorrect in the classification process made 
with the neural network model trained with 
backpropagation algorithm with momentum 
coefficient, with an accuracy percentage of 76.8%. 
131 of 143 patients with hypertension classified as 
correct and 12 as incorrect, with an accuracy rate of 
91.6%. 

 

In the classification process made with the neural 
network model trained with backpropagation 
algorithm with momentum coefficient, the overall 
accuracy value was calculated as 86.2% by correctly 
classifying 194 of 225 patients. 

4.2.2 Classification by the conjugate gradient 
backpropagation algorithm 

The weights calculated after training the network 
with the conjugate gradient backpropagation 
algorithm are given in Table 7. 

By using the weights calculated after the network is 
trained, the network output is calculated with the 
Equation (31). As in the neural network model 
trained with backpropagation algorithm with 
momentum coefficient, the 𝑦̂ values are assigned by 
giving a value “0” to those less than 0.5 and a value 
of “1” to those greater than 0.5 for the classification 
process. These assignment values were compared 
with the observation values and the correct 
classification rates were calculated. The accuracy 
percentages calculated in the classification process 
for the data set used after the network was trained 
are given in Table 8.
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Table 7. The weights calculated after training the network with the conjugate gradient backpropagation 
algorithm. 

bij weights between input layer and hidden layer 
  j  
i  

1 2 3 4 5 6 7 

1 0.50044 -1.730519 -0.432385 -2.212496 -0.310118 -0.536704 -0.797588 
2 -0.089624 1.59597 -1.718343 0.194532 -3.885706 -1.279213 -1.481379 
3 0.073586 0.176147 -2.741652 0.638694 -1.827383 -0.964285 -2.103983 
4 -0.650837 -0.115309 -3.471644 0.639703 0.244935 -0.653154 -1.481175 
5 -0.192319 -0.979086 1.14439 1.29368 -0.984991 0.506407 -1.323641 
6 0.119219 1.328376 -0.461388 0.72299 -1.144382 0.045564 -0.932604 
7 -0.597068 0.609235 -2.262588 -0.§68023 0.341118 O.071685 -0.917533 
8 -0.831742 -0.473473 0.386028 0.55305 -0.576316 -1.043114 -1.102681 
9 0.520319 -1.427755 -2.942906 -0.360444 -1.911586 -0.921742 -1.922553 

10 -0.264529 0.101774 -2.476718 -1.508757 0.731404 -1.119844 -0.99558 
11 0.088826 0.331771 -4.073246 -0.216949 0.621034 -0.121464 -2.126909 
12 -0.897644 0.109378 -0.875451 -0.716155 1.556789 -0.189914 -1.367429 
13 -0.307702 -1.136922 3.832603 -1.293699 0.138086 -1.617161 -0.455787 
14 -1.509156 0.012926 -2.93491 0.230133 -2.5357 -0.735346 -2.920688 
15 0.454645 1.265555 0.10662 0.764483 -1.667776 -0.019351 -1.419592 

 
cjk weights between hidden layer and output layer 
     j  
k  

1 2 3 4 5 6 7 

1 1.180347 -2.461950 -5.509069 -2.862042 -4.694672 0.832300 -1.448453 

 

Table 8. Classification table for neural network 
model trained with conjugate gradient 

backpropagation algorithm. 

 estimated values  
hypertension 

no yes total accuracy (%) 
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60 22 82 73.1 

y
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4 139 143 97.2 

total 64 161 225 88.4 

As given in Table 8, 82 of 225 patients were not 
actually hypertensive. The remaining 143 patients 
are hypertensive. 60 of 82 patients without 
hypertension were classified as correct and 22 of 
them as incorrect in the classification process made 
with the neural network model trained with 
conjugate gradient backpropagation algorithm, 
with an accuracy percentage of 73.1%. 139 of 143 
patients with hypertension classified as correct and 
4 as incorrect, with an accuracy rate of 97.2%. 

In the classification process made with the neural 
network model trained with conjugate gradient 
backpropagation algorithm, the overall accuracy 
value was calculated as 88.4% by correctly 
classifying 199 of 225 patients. 

5 Conclusions 

The data set of 225 patients who consulted the 
Internal Medicine polyclinic of OGU Health, 
Application and Research Hospital was first 
classified by logistic regression analysis, and then 
by artificial neural network models trained with 
backpropagation algorithms. The accuracy 
percentages calculated as a result of the application 
are given in Table 9. 

Table 9. Accuracy percentages calculated as a 
result of the application 

 hypertension  
no yes  

 accuracy 
(%) 

accuracy 
(%) 

accuracy 
(%) 

Logistis regression 
analysis 

52.4 85.3 73.3 

Neural network model 
trained with the 
backpropagation 

algorithm with 
momentum coefficient 

76.8 91.6 86.2 

Neural network model 
trained with the 

conjugate gradient 
backpropagation 

algorithm 

73.1 97.2 88.4 

When Table 9 is examined, it is seen that the overall 
accuracy percentages in the correct classification of 
the data are calculated as 73.3% for the logistic 
regression analysis, 86.2% for the neural network 
model trained with the backpropagation algorithm 
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with momentum coefficient, and 88.4% for the 
artificial neural network model trained with the 
conjugate gradient backpropagation algorithm. 

According to these results, it has been observed that 
classification with appropriate neural network 
models in binary classification problems tends to 
give better results than classification with logistic 
analysis, which is frequently used in the field of 
statistics. 

Since the activation function applied to the units of 
the hidden layer in multi-layer neural network 
models is a nonlinear function, these models are 
real nonlinear models. Accordingly, classifications 
made with multi-layer neural network models give 
better results. Based on this result, the multinomial 
logistic regression model and the appropriate 
multi-layer neural network model can be compared 
in further studies to investigate the usability and 
effectiveness of neural network models in 
classification problems where the dependent 
variable has more than two categories. 

In addition, statistical models also affect the 
development of artificial neural network models. 
For this reason, it is more beneficial to use statistical 
models and artificial neural network models 
together. In this respect, the mutual application of 
both fields is one of the important issues and 
requires further research. 
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