Research Article
BibTex RIS Cite
Year 2023, Volume: 7 Issue: 2, 122 - 127, 20.06.2023

Abstract

References

  • [1] A. G. Korchenko and O. S. Illyash, “The generalized classification of Unmanned Air Vehicles,” 2013 IEEE 2nd Int. Conf. Actual Probl. Unmanned Air Veh. Dev. APUAVD 2013 - Proc., pp. 28–34, 2013, doi: 10.1109/APUAVD.2013.6705275.
  • [2] M. Hassanalian and A. Abdelkefi, “Classifications, applications, and design challenges of drones: A review,” Prog. Aerosp. Sci., vol. 91, no. April, pp. 99–131, 2017, doi: 10.1016/j.paerosci.2017.04.003.
  • [3] S. A. H. Mohsan, M. A. Khan, F. Noor, I. Ullah, and M. H. Alsharif, “Towards the Unmanned Aerial Vehicles (UAVs): A Comprehensive Review,” Drones, vol. 6, no. 6, 2022, doi: 10.3390/drones6060147.
  • [4] B. Lu and Y. He, “Species classification using Unmanned Aerial Vehicle (UAV)-acquired high spatial resolution imagery in a heterogeneous grassland,” ISPRS J. Photogramm. Remote Sens., vol. 128, pp. 73–85, 2017, doi: 10.1016/j.isprsjprs.2017.03.011.
  • [5] S. Coban, H. H. Bilgic, and E. Akan, “Improving autonomous performance of a passive morphing fixed-wing UAV,” Inf. Technol. Control, vol. 49, no. 1, pp. 28–35, 2020, doi: 10.5755/j01.itc.49.1.23275.
  • [6] S. COBAN, H. hüseyin Bilgiç, and T. Oktay, “Designing, Dynamic Modeling and Simulation of ISTECOPTER,” J. Aviat., vol. 3, no. 1, pp. 38–44, 2019, doi: 10.30518/jav.564376.
  • [7] N. Muralidharan, V. G. Pratheep, A. Shanmugam, A. Hariram, P. Dinesh, and B. Visnu, “Structural analysis of mini drone developed using 3D printing technique,” Mater. Today Proc., vol. 46, pp. 8748–8752, 2021, doi: 10.1016/j.matpr.2021.04.053.
  • [8] S. D. Shelare, K. R. Aglawe, and P. B. Khope, “Computer aided modeling and finite element analysis of 3-D printed drone,” Mater. Today Proc., vol. 47, pp. 3375–3379, 2021, doi: 10.1016/j.matpr.2021.07.162.
  • [9] S. Sundararaj, K. Dharsan, J. Ganeshraman, and D. Rajarajeswari, “Structural and modal analysis of hybrid low altitude self-sustainable surveillance drone technology frame,” Mater. Today Proc., vol. 37, no. Part 2, pp. 409–418, 2020, doi: 10.1016/j.matpr.2020.05.397.
  • [10] A. V. Javir, K. Pawar, S. Dhudum, N. Patale, and S. Patil, “Design, Analysis and Fabrication of Quadcopter,” J. Adv. Res. Mech. Civ. Eng. (ISSN 2208-2379), vol. 2, no. 3, pp. 16–27, 2015, doi: 10.53555/nnmce.v2i3.342.
  • [11] M. Kim, H. Ryu, T. Kim, Y. Kim, J. Doh, and S. Kim, “The Design Improvement of a Rotary-Wing Aircraft Frame Considering Fatigue Life and Fracture Characteristics,” Int. J. Aeronaut. Sp. Sci., vol. 22, no. 6, pp. 1313–1320, 2021, doi: 10.1007/s42405-021-00410-x.
  • [12] A. Aribowo et al., “Finite element method on topology optimization applied to laminate composite of fuselage structure,” Curved Layer. Struct., vol. 10, no. 1, 2023, doi: 10.1515/cls-2022-0191.
  • [13] H. Guo, M. Li, P. Sun, C. Zhao, W. Zuo, and X. Li, “Lightweight and maintainable rotary-wing UAV frame from configurable design to detailed design,” Adv. Mech. Eng., vol. 13, no. 7, pp. 1–10, 2021, doi: 10.1177/16878140211034999.
  • [14] S. Nvss, B. Esakki, L. J. Yang, C. Udayagiri, and K. S. Vepa, “Design and Development of Unibody Quadcopter Structure Using Optimization and Additive Manufacturing Techniques,” Designs, vol. 6, no. 1, 2022, doi: 10.3390/designs6010008.
  • [15] S. K. Moon, Y. E. Tan, J. Hwang, and Y. J. Yoon, “Application of 3D printing technology for designing light-weight unmanned aerial vehicle wing structures,” Int. J. Precis. Eng. Manuf. - Green Technol., vol. 1, no. 3, pp. 223–228, 2014, doi: 10.1007/s40684-014-0028-x.
  • [16] L. J. Yang, B. Esakki, U. Chandrasekhar, K. C. Hung, and C. M. Cheng, “Practical flapping mechanisms for 20 cm-span micro air vehicles,” Int. J. Micro Air Veh., vol. 7, no. 2, pp. 181–202, 2015, doi: 10.1260/1756-8293.7.2.181.
  • [17] R. Mahony, V. Kumar, and P. Corke, “Multirotor aerial vehicles: Modeling, estimation, and control of quadrotor,” IEEE Robot. Autom. Mag., vol. 19, no. 3, pp. 20–32, 2012, doi: 10.1109/MRA.2012.2206474.
  • [18] V. Bhatia, R. Karthikeyan, R. K. Ganesh Ram, and Y. N. Cooper, “Design optimisation and analysis of a quadrotor arm using finite element method,” in Applied Mechanics and Materials, 2014, vol. 664, pp. 371–375.
  • [19] S. P. Yeong, L. M. King, and S. S. Dol, “A Review on Marine Search and Rescue Operations Using Unmanned Aerial Vehicles,” Int. J. Mar. Environ. Sci., vol. 9, no. 2, pp. 396–399, 2015.
  • [20] S. Delfel, “Introduction to Mesh Generation with ANSYS workbench,” Coanda Res. Dev. Corp., 2013.,

Structural comparison of vertical and horizontal layout of carrying arms of rotary-wing UAV with finite element analysis

Year 2023, Volume: 7 Issue: 2, 122 - 127, 20.06.2023

Abstract

In this study, numerical analysis of the fuselage of a rotary wing unmanned aerial vehicle was conducted. A fuselage that is resistant to the loads on the fuselage and has maximum lightness has been designed. In this context, the fuselage design was conducted based on the loads that the aircraft's fuselage would be exposed to during landing and take-off, and a three-dimensional modeling was created. Numerical analyzes were carried out using the designed solid model finite element method. It has been observed that the obtained data can meet the loads on the airframe without any breakage in the specified configuration. The findings obtained at the end of the study were supported by graphics

References

  • [1] A. G. Korchenko and O. S. Illyash, “The generalized classification of Unmanned Air Vehicles,” 2013 IEEE 2nd Int. Conf. Actual Probl. Unmanned Air Veh. Dev. APUAVD 2013 - Proc., pp. 28–34, 2013, doi: 10.1109/APUAVD.2013.6705275.
  • [2] M. Hassanalian and A. Abdelkefi, “Classifications, applications, and design challenges of drones: A review,” Prog. Aerosp. Sci., vol. 91, no. April, pp. 99–131, 2017, doi: 10.1016/j.paerosci.2017.04.003.
  • [3] S. A. H. Mohsan, M. A. Khan, F. Noor, I. Ullah, and M. H. Alsharif, “Towards the Unmanned Aerial Vehicles (UAVs): A Comprehensive Review,” Drones, vol. 6, no. 6, 2022, doi: 10.3390/drones6060147.
  • [4] B. Lu and Y. He, “Species classification using Unmanned Aerial Vehicle (UAV)-acquired high spatial resolution imagery in a heterogeneous grassland,” ISPRS J. Photogramm. Remote Sens., vol. 128, pp. 73–85, 2017, doi: 10.1016/j.isprsjprs.2017.03.011.
  • [5] S. Coban, H. H. Bilgic, and E. Akan, “Improving autonomous performance of a passive morphing fixed-wing UAV,” Inf. Technol. Control, vol. 49, no. 1, pp. 28–35, 2020, doi: 10.5755/j01.itc.49.1.23275.
  • [6] S. COBAN, H. hüseyin Bilgiç, and T. Oktay, “Designing, Dynamic Modeling and Simulation of ISTECOPTER,” J. Aviat., vol. 3, no. 1, pp. 38–44, 2019, doi: 10.30518/jav.564376.
  • [7] N. Muralidharan, V. G. Pratheep, A. Shanmugam, A. Hariram, P. Dinesh, and B. Visnu, “Structural analysis of mini drone developed using 3D printing technique,” Mater. Today Proc., vol. 46, pp. 8748–8752, 2021, doi: 10.1016/j.matpr.2021.04.053.
  • [8] S. D. Shelare, K. R. Aglawe, and P. B. Khope, “Computer aided modeling and finite element analysis of 3-D printed drone,” Mater. Today Proc., vol. 47, pp. 3375–3379, 2021, doi: 10.1016/j.matpr.2021.07.162.
  • [9] S. Sundararaj, K. Dharsan, J. Ganeshraman, and D. Rajarajeswari, “Structural and modal analysis of hybrid low altitude self-sustainable surveillance drone technology frame,” Mater. Today Proc., vol. 37, no. Part 2, pp. 409–418, 2020, doi: 10.1016/j.matpr.2020.05.397.
  • [10] A. V. Javir, K. Pawar, S. Dhudum, N. Patale, and S. Patil, “Design, Analysis and Fabrication of Quadcopter,” J. Adv. Res. Mech. Civ. Eng. (ISSN 2208-2379), vol. 2, no. 3, pp. 16–27, 2015, doi: 10.53555/nnmce.v2i3.342.
  • [11] M. Kim, H. Ryu, T. Kim, Y. Kim, J. Doh, and S. Kim, “The Design Improvement of a Rotary-Wing Aircraft Frame Considering Fatigue Life and Fracture Characteristics,” Int. J. Aeronaut. Sp. Sci., vol. 22, no. 6, pp. 1313–1320, 2021, doi: 10.1007/s42405-021-00410-x.
  • [12] A. Aribowo et al., “Finite element method on topology optimization applied to laminate composite of fuselage structure,” Curved Layer. Struct., vol. 10, no. 1, 2023, doi: 10.1515/cls-2022-0191.
  • [13] H. Guo, M. Li, P. Sun, C. Zhao, W. Zuo, and X. Li, “Lightweight and maintainable rotary-wing UAV frame from configurable design to detailed design,” Adv. Mech. Eng., vol. 13, no. 7, pp. 1–10, 2021, doi: 10.1177/16878140211034999.
  • [14] S. Nvss, B. Esakki, L. J. Yang, C. Udayagiri, and K. S. Vepa, “Design and Development of Unibody Quadcopter Structure Using Optimization and Additive Manufacturing Techniques,” Designs, vol. 6, no. 1, 2022, doi: 10.3390/designs6010008.
  • [15] S. K. Moon, Y. E. Tan, J. Hwang, and Y. J. Yoon, “Application of 3D printing technology for designing light-weight unmanned aerial vehicle wing structures,” Int. J. Precis. Eng. Manuf. - Green Technol., vol. 1, no. 3, pp. 223–228, 2014, doi: 10.1007/s40684-014-0028-x.
  • [16] L. J. Yang, B. Esakki, U. Chandrasekhar, K. C. Hung, and C. M. Cheng, “Practical flapping mechanisms for 20 cm-span micro air vehicles,” Int. J. Micro Air Veh., vol. 7, no. 2, pp. 181–202, 2015, doi: 10.1260/1756-8293.7.2.181.
  • [17] R. Mahony, V. Kumar, and P. Corke, “Multirotor aerial vehicles: Modeling, estimation, and control of quadrotor,” IEEE Robot. Autom. Mag., vol. 19, no. 3, pp. 20–32, 2012, doi: 10.1109/MRA.2012.2206474.
  • [18] V. Bhatia, R. Karthikeyan, R. K. Ganesh Ram, and Y. N. Cooper, “Design optimisation and analysis of a quadrotor arm using finite element method,” in Applied Mechanics and Materials, 2014, vol. 664, pp. 371–375.
  • [19] S. P. Yeong, L. M. King, and S. S. Dol, “A Review on Marine Search and Rescue Operations Using Unmanned Aerial Vehicles,” Int. J. Mar. Environ. Sci., vol. 9, no. 2, pp. 396–399, 2015.
  • [20] S. Delfel, “Introduction to Mesh Generation with ANSYS workbench,” Coanda Res. Dev. Corp., 2013.,
There are 20 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering
Journal Section Research Article
Authors

Abdullah Kocamer 0000-0001-8948-6390

Hasan Çınar 0000-0001-8718-3767

Metin Uzun 0000-0002-0744-3491

Sezer Çoban 0000-0001-6750-5001

Publication Date June 20, 2023
Acceptance Date June 12, 2023
Published in Issue Year 2023 Volume: 7 Issue: 2

Cite

APA Kocamer, A., Çınar, H., Uzun, M., Çoban, S. (2023). Structural comparison of vertical and horizontal layout of carrying arms of rotary-wing UAV with finite element analysis. European Mechanical Science, 7(2), 122-127.
AMA Kocamer A, Çınar H, Uzun M, Çoban S. Structural comparison of vertical and horizontal layout of carrying arms of rotary-wing UAV with finite element analysis. EMS. June 2023;7(2):122-127.
Chicago Kocamer, Abdullah, Hasan Çınar, Metin Uzun, and Sezer Çoban. “Structural Comparison of Vertical and Horizontal Layout of Carrying Arms of Rotary-Wing UAV With Finite Element Analysis”. European Mechanical Science 7, no. 2 (June 2023): 122-27.
EndNote Kocamer A, Çınar H, Uzun M, Çoban S (June 1, 2023) Structural comparison of vertical and horizontal layout of carrying arms of rotary-wing UAV with finite element analysis. European Mechanical Science 7 2 122–127.
IEEE A. Kocamer, H. Çınar, M. Uzun, and S. Çoban, “Structural comparison of vertical and horizontal layout of carrying arms of rotary-wing UAV with finite element analysis”, EMS, vol. 7, no. 2, pp. 122–127, 2023.
ISNAD Kocamer, Abdullah et al. “Structural Comparison of Vertical and Horizontal Layout of Carrying Arms of Rotary-Wing UAV With Finite Element Analysis”. European Mechanical Science 7/2 (June 2023), 122-127.
JAMA Kocamer A, Çınar H, Uzun M, Çoban S. Structural comparison of vertical and horizontal layout of carrying arms of rotary-wing UAV with finite element analysis. EMS. 2023;7:122–127.
MLA Kocamer, Abdullah et al. “Structural Comparison of Vertical and Horizontal Layout of Carrying Arms of Rotary-Wing UAV With Finite Element Analysis”. European Mechanical Science, vol. 7, no. 2, 2023, pp. 122-7.
Vancouver Kocamer A, Çınar H, Uzun M, Çoban S. Structural comparison of vertical and horizontal layout of carrying arms of rotary-wing UAV with finite element analysis. EMS. 2023;7(2):122-7.

Dergi TR Dizin'de Taranmaktadır.

Flag Counter