Research Article
BibTex RIS Cite
Year 2023, Volume: 39 Issue: 2, 183 - 191, 31.08.2023

Abstract

References

  • [1] B. Zhang, Z. Song, F. Zhao, and C. Liu, “Overview of Propulsion Systems for Unmanned Aerial Vehicles,” Energies, vol. 15, no. 2, 2022, doi: 10.3390/en15020455.
  • [2] D. Jimenez, E. Valencia, A. Herrera, E. Cando, and M. Pozo, “Evaluation of Series and Parallel Hybrid Propulsion Systems for UAVs Implementing Distributed Propulsion Architectures,” Aerospace, vol. 9, no. 2, pp. 1– 17, 2022, doi: 10.3390/aerospace9020063.
  • [3] C. Cruzatty, E. Sarmiento, E. Valencia, and E. Cando, “Design methodology of a UAV propeller implemented in monitoring activities,” Mater. Today Proc., vol. 49, pp. 115–121, 2022, doi: 10.1016/j.matpr.2021.07.481.
  • [4] P. Rajendran and A. Jayaprakash, “Numerical performance analysis of a twin blade drone rotor propeller,” Mater. Today Proc., no. xxxx, 2022, doi: 10.1016/j.matpr.2022.10.201.
  • [5] H. A. Kutty and P. Rajendran, “3D CFD simulation and experimental validation of small APC slow flyer propeller blade,” Aerospace, vol. 4, no. 1, 2017, doi: 10.3390/aerospace4010010.
  • [6] C. Paz, E. Suárez, C. Gil, and C. Baker, “CFD analysis of the aerodynamic effects on the stability of the flight of a quadcopter UAV in the proximity of walls and ground,” J. Wind Eng. Ind. Aerodyn., vol. 206, no. June, 2020, doi: 10.1016/j.jweia.2020.104378.
  • [7] F. A. Maulana, E. Amalia, and M. A. Moelyadi, “Computational fluid dynamics (CFD) based propeller design improvement for high altitude long endurance (HALE) UAV,” Int. J. Intell. Unmanned Syst., vol. 4, 2022, doi: 10.1108/IJIUS-07-2021-0078. Fluid-structure coupled simulation-based investigation and thrust/efficiency calculation for a UAV twin-blade propeller
  • [8] J. R. Serrano Cruz, A. O. Tiseira, L. M. García-Cuevas, and P. Varela, “Computational study of the propeller position effects in wing-mounted, distributed electric propulsion with boundary layer ingestion in a 25 kg remotely piloted aircraft,” Drones, vol. 5, no. 3, 2021, doi: 10.3390/drones5030056.
  • [9] T. OKTAY and Y. ERASLAN, “Numerical Investigation of Effects of Airspeed and Rotational Speed on Quadrotor UAV Propeller Thrust Coefficient,” J. Aviat., vol. 5, no. February, pp. 9–15, 2021, doi: 10.30518/jav.872627.
  • [10] T. Oktay and Y. Eraslan, “Computational Fluid Dynamics (Cfd) Investigation Of A Quadrotor Uav Propeller,” Int. Conf. Energy, Environ. Storage Energy (ICEESEN 2020), no. June, pp. 1–5, 2020.
  • [11] Y. Eraslan, E. Özen, and T. Oktay, “A Literature Review on Determination of Quadrotor Unmanned Aerial Vehicles Propeller Thrust and Power Coefficients,” Ejons X – Int. Conf. Math. – Eng. – Nat. Med. Sci., no. 17-20 May, pp. 1–12, 2020.
  • [12] K. You, X. Zhao, S. Z. Zhao, and M. Faisal, “Design and optimization of a high-altitude long endurance UAV propeller,” IOP Conf. Ser. Mater. Sci. Eng., vol. 926, no. 1, 2020, doi: 10.1088/1757-899X/926/1/012018.
  • [13] E. Yilmaz and J. Hu, “CFD Study of Quadcopter Aerodynamics at Static Thrust Conditions Electronics thermal management View project Quadcopter aerodynamics View project CFD Study of Quadcopter Aerodynamics at Static Thrust Conditions,” no. October, 2018, [Online]. Available: https://www.researchgate.net/publication/328007354
  • [14] “View of An Open-Source Aerodynamic Shape Optimization Application for an Unmanned Aerial Vehicle (UAV) Propeller.pdf.”
  • [15] M. Ramesh, R. Vijayanandh, G. Raj Kumar, V. Mathaiyan, P. Jagadeeshwaran, and M. Senthil Kumar, “Comparative Structural Analysis of Various Composite Materials based Unmanned Aerial Vehicle’s Propeller by using Advanced Methodologies,” IOP Conf. Ser. Mater. Sci. Eng., vol. 1017, no. 1, 2021, doi: 10.1088/1757- 899X/1017/1/012032.
  • [16] C. M. Reed, D. A. Coleman, and M. Benedict, “Force and flowfield measurements to understand unsteady aerodynamics of cycloidal rotors in hover at ultra-low Reynolds numbers,” Int. J. Micro Air Veh., vol. 11, 2019, doi: 10.1177/1756829319833677.
  • [17] Mejzlik Company. 2023. Propeller performance prediction tools. https://www.mejzlik.eu/technicaldata/propeller_calculator (Access date: 01.05.2023).
  • [18] T-MOTOR Company. 2023. Propeller products. https://store.tmotor.com/ (Access date: 01.05.2023).
  • [19] APC Company. 2023. Propeller performance data. https://www.apcprop.com/technicalinformation/performance-data/ (Access date: 01.05.2023). [20] University of Illinois at Urbana-Champaign. 2023. APC propeller performance data. https://mselig.ae.illinois.edu/ (Access date: 01.05.2023). [21] David Lee Wall, ‘Optimum Propeller Design for Electric UAVs’, Master Thesis, Auburn University, USA.
  • [22] ANSYS, ANSYS Fluent Mosaic Technology Automatically Combines Disparate Meshes with Polyhedral Elements for Fast, Accurate Flow Resolution. https://www.ansys.com/content/dam/resource-center/whitepaper/ansys-fluent-mosaic-technology-wp.pdf (Access date: 01.05.2023).

Fluid-structure coupled simulation-based investigation and thrust/efficiency calculation for a UAV twin-blade propeller

Year 2023, Volume: 39 Issue: 2, 183 - 191, 31.08.2023

Abstract

This study presents a coupled numerical investigation consisting of fluid and structural analysis for a UAV propeller. Flow and structural analysis are carried out in ANSYS Fluent and Static Structural modules, respectively. The mechanical properties of the propeller are investigated for Plastic ABS and Carbon Fiber (395 GPA) materials at 2000, 6000 and 10000 rpm rotational speeds. Consequently, it is observed that the total deformation and equivalent elastic strain of Carbon Fiber (395 GPA) material is less at all rotational speeds. In addition, the thrust and power of the propeller are calculated for these rotational speeds and their change in UAV forward speeds (1, 5, 8, 10, and 12 m/s) is examined at 6000 and 10000 rpm. Accordingly, it is observed that the power and thrust of the propeller decreased with the increase in the forward speed of the UAV at constant propeller rotation speed.

References

  • [1] B. Zhang, Z. Song, F. Zhao, and C. Liu, “Overview of Propulsion Systems for Unmanned Aerial Vehicles,” Energies, vol. 15, no. 2, 2022, doi: 10.3390/en15020455.
  • [2] D. Jimenez, E. Valencia, A. Herrera, E. Cando, and M. Pozo, “Evaluation of Series and Parallel Hybrid Propulsion Systems for UAVs Implementing Distributed Propulsion Architectures,” Aerospace, vol. 9, no. 2, pp. 1– 17, 2022, doi: 10.3390/aerospace9020063.
  • [3] C. Cruzatty, E. Sarmiento, E. Valencia, and E. Cando, “Design methodology of a UAV propeller implemented in monitoring activities,” Mater. Today Proc., vol. 49, pp. 115–121, 2022, doi: 10.1016/j.matpr.2021.07.481.
  • [4] P. Rajendran and A. Jayaprakash, “Numerical performance analysis of a twin blade drone rotor propeller,” Mater. Today Proc., no. xxxx, 2022, doi: 10.1016/j.matpr.2022.10.201.
  • [5] H. A. Kutty and P. Rajendran, “3D CFD simulation and experimental validation of small APC slow flyer propeller blade,” Aerospace, vol. 4, no. 1, 2017, doi: 10.3390/aerospace4010010.
  • [6] C. Paz, E. Suárez, C. Gil, and C. Baker, “CFD analysis of the aerodynamic effects on the stability of the flight of a quadcopter UAV in the proximity of walls and ground,” J. Wind Eng. Ind. Aerodyn., vol. 206, no. June, 2020, doi: 10.1016/j.jweia.2020.104378.
  • [7] F. A. Maulana, E. Amalia, and M. A. Moelyadi, “Computational fluid dynamics (CFD) based propeller design improvement for high altitude long endurance (HALE) UAV,” Int. J. Intell. Unmanned Syst., vol. 4, 2022, doi: 10.1108/IJIUS-07-2021-0078. Fluid-structure coupled simulation-based investigation and thrust/efficiency calculation for a UAV twin-blade propeller
  • [8] J. R. Serrano Cruz, A. O. Tiseira, L. M. García-Cuevas, and P. Varela, “Computational study of the propeller position effects in wing-mounted, distributed electric propulsion with boundary layer ingestion in a 25 kg remotely piloted aircraft,” Drones, vol. 5, no. 3, 2021, doi: 10.3390/drones5030056.
  • [9] T. OKTAY and Y. ERASLAN, “Numerical Investigation of Effects of Airspeed and Rotational Speed on Quadrotor UAV Propeller Thrust Coefficient,” J. Aviat., vol. 5, no. February, pp. 9–15, 2021, doi: 10.30518/jav.872627.
  • [10] T. Oktay and Y. Eraslan, “Computational Fluid Dynamics (Cfd) Investigation Of A Quadrotor Uav Propeller,” Int. Conf. Energy, Environ. Storage Energy (ICEESEN 2020), no. June, pp. 1–5, 2020.
  • [11] Y. Eraslan, E. Özen, and T. Oktay, “A Literature Review on Determination of Quadrotor Unmanned Aerial Vehicles Propeller Thrust and Power Coefficients,” Ejons X – Int. Conf. Math. – Eng. – Nat. Med. Sci., no. 17-20 May, pp. 1–12, 2020.
  • [12] K. You, X. Zhao, S. Z. Zhao, and M. Faisal, “Design and optimization of a high-altitude long endurance UAV propeller,” IOP Conf. Ser. Mater. Sci. Eng., vol. 926, no. 1, 2020, doi: 10.1088/1757-899X/926/1/012018.
  • [13] E. Yilmaz and J. Hu, “CFD Study of Quadcopter Aerodynamics at Static Thrust Conditions Electronics thermal management View project Quadcopter aerodynamics View project CFD Study of Quadcopter Aerodynamics at Static Thrust Conditions,” no. October, 2018, [Online]. Available: https://www.researchgate.net/publication/328007354
  • [14] “View of An Open-Source Aerodynamic Shape Optimization Application for an Unmanned Aerial Vehicle (UAV) Propeller.pdf.”
  • [15] M. Ramesh, R. Vijayanandh, G. Raj Kumar, V. Mathaiyan, P. Jagadeeshwaran, and M. Senthil Kumar, “Comparative Structural Analysis of Various Composite Materials based Unmanned Aerial Vehicle’s Propeller by using Advanced Methodologies,” IOP Conf. Ser. Mater. Sci. Eng., vol. 1017, no. 1, 2021, doi: 10.1088/1757- 899X/1017/1/012032.
  • [16] C. M. Reed, D. A. Coleman, and M. Benedict, “Force and flowfield measurements to understand unsteady aerodynamics of cycloidal rotors in hover at ultra-low Reynolds numbers,” Int. J. Micro Air Veh., vol. 11, 2019, doi: 10.1177/1756829319833677.
  • [17] Mejzlik Company. 2023. Propeller performance prediction tools. https://www.mejzlik.eu/technicaldata/propeller_calculator (Access date: 01.05.2023).
  • [18] T-MOTOR Company. 2023. Propeller products. https://store.tmotor.com/ (Access date: 01.05.2023).
  • [19] APC Company. 2023. Propeller performance data. https://www.apcprop.com/technicalinformation/performance-data/ (Access date: 01.05.2023). [20] University of Illinois at Urbana-Champaign. 2023. APC propeller performance data. https://mselig.ae.illinois.edu/ (Access date: 01.05.2023). [21] David Lee Wall, ‘Optimum Propeller Design for Electric UAVs’, Master Thesis, Auburn University, USA.
  • [22] ANSYS, ANSYS Fluent Mosaic Technology Automatically Combines Disparate Meshes with Polyhedral Elements for Fast, Accurate Flow Resolution. https://www.ansys.com/content/dam/resource-center/whitepaper/ansys-fluent-mosaic-technology-wp.pdf (Access date: 01.05.2023).
There are 20 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Metin Uzun 0000-0002-0744-3491

Hasan Çınar 0000-0001-8718-3767

Abdullah Kocamer 0000-0001-8948-6390

Sezer Çoban 0000-0001-6750-5001

Publication Date August 31, 2023
Published in Issue Year 2023 Volume: 39 Issue: 2

Cite

APA Uzun, M., Çınar, H., Kocamer, A., Çoban, S. (2023). Fluid-structure coupled simulation-based investigation and thrust/efficiency calculation for a UAV twin-blade propeller. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, 39(2), 183-191.
AMA Uzun M, Çınar H, Kocamer A, Çoban S. Fluid-structure coupled simulation-based investigation and thrust/efficiency calculation for a UAV twin-blade propeller. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi. August 2023;39(2):183-191.
Chicago Uzun, Metin, Hasan Çınar, Abdullah Kocamer, and Sezer Çoban. “Fluid-Structure Coupled Simulation-Based Investigation and thrust/Efficiency Calculation for a UAV Twin-Blade Propeller”. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi 39, no. 2 (August 2023): 183-91.
EndNote Uzun M, Çınar H, Kocamer A, Çoban S (August 1, 2023) Fluid-structure coupled simulation-based investigation and thrust/efficiency calculation for a UAV twin-blade propeller. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi 39 2 183–191.
IEEE M. Uzun, H. Çınar, A. Kocamer, and S. Çoban, “Fluid-structure coupled simulation-based investigation and thrust/efficiency calculation for a UAV twin-blade propeller”, Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, vol. 39, no. 2, pp. 183–191, 2023.
ISNAD Uzun, Metin et al. “Fluid-Structure Coupled Simulation-Based Investigation and thrust/Efficiency Calculation for a UAV Twin-Blade Propeller”. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi 39/2 (August 2023), 183-191.
JAMA Uzun M, Çınar H, Kocamer A, Çoban S. Fluid-structure coupled simulation-based investigation and thrust/efficiency calculation for a UAV twin-blade propeller. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi. 2023;39:183–191.
MLA Uzun, Metin et al. “Fluid-Structure Coupled Simulation-Based Investigation and thrust/Efficiency Calculation for a UAV Twin-Blade Propeller”. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, vol. 39, no. 2, 2023, pp. 183-91.
Vancouver Uzun M, Çınar H, Kocamer A, Çoban S. Fluid-structure coupled simulation-based investigation and thrust/efficiency calculation for a UAV twin-blade propeller. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi. 2023;39(2):183-91.

✯ Etik kurul izni gerektiren, tüm bilim dallarında yapılan araştırmalar için etik kurul onayı alınmış olmalı, bu onay makalede belirtilmeli ve belgelendirilmelidir.
✯ Etik kurul izni gerektiren araştırmalarda, izinle ilgili bilgilere (kurul adı, tarih ve sayı no) yöntem bölümünde, ayrıca makalenin ilk/son sayfalarından birinde; olgu sunumlarında, bilgilendirilmiş gönüllü olur/onam formunun imzalatıldığına dair bilgiye makalede yer verilmelidir.
✯ Dergi web sayfasında, makalelerde Araştırma ve Yayın Etiğine uyulduğuna dair ifadeye yer verilmelidir.
✯ Dergi web sayfasında, hakem, yazar ve editör için ayrı başlıklar altında etik kurallarla ilgili bilgi verilmelidir.
✯ Dergide ve/veya web sayfasında, ulusal ve uluslararası standartlara atıf yaparak, dergide ve/veya web sayfasında etik ilkeler ayrı başlık altında belirtilmelidir. Örneğin; dergilere gönderilen bilimsel yazılarda, ICMJE (International Committee of Medical Journal Editors) tavsiyeleri ile COPE (Committee on Publication Ethics)’un Editör ve Yazarlar için Uluslararası Standartları dikkate alınmalıdır.
✯ Kullanılan fikir ve sanat eserleri için telif hakları düzenlemelerine riayet edilmesi gerekmektedir.