Research Article
BibTex RIS Cite
Year 2023, Volume: 10 Issue: 2, 140 - 148, 27.06.2023
https://doi.org/10.54287/gujsa.1245213

Abstract

References

  • Alemu, A. S., Yoon, J., Tafesse, M., Seo, Y.-S., Kim, H.-K., & Pyo, S. (2021). Practical considerations of porosity, strength, and acoustic absorption of structural pervious concrete, Case Studies in Construction Materials, 15, e00764. doi:10.1016/j.cscm.2021.e00764
  • Arivumangai, A., & Felixkala, T. (2014). Strength and durability properties of granite powder concrete. Journal of Civil Engineering Research, 4(2A), 1-6. doi:10.5923.c.jce.201401.01
  • ASTM C20-00 (2022). Standard test methods for apparent porosity, water absorption, apparent specific gravity, and bulk density of burned refractory brick and shapes by boiling water. ASTM International, West Conshohocken, PA. doi:10.1520/C0020-00R22
  • ASTM C240-97 (2017). Standard test methods of testing cellular glass insulation block. ASTM International, West Conshohocken, PA. doi:10.1520/C0240-97
  • Ayodele, O. J., Shittu, O. S., & Balogun, T. (2014). Heavy metal pollution assessment of granite quarrying operations at Ikole-Ekiti, Nigeria. International Journal of Environmental Monitoring and Analysis, 2(6), 333-339. doi:10.11648/j.ijema.20140206.16
  • Chen, C., Feng, K., Zhou, Y., & Zhou, H. (2017). Effect of sintering temperature on the microstructure and properties of foamed glass-ceramics prepared from high-titanium blast furnace slag and waste glass, International Journal of Minerals, Metallurgy and Materials. 24(8), 931-936. doi:10.1007/s12613-017-1480-8
  • da Silva, R. C., Kubaski, E. T., & Tebcherani, S. M. (2019). Glass foams produced by glass waste, sodium hydroxide, and borax with several pore structures using factorial design. International Journal of Applied Ceramic Technology, 17, 75-83. doi:10.1111/ijac.13210
  • Dragoescu, M. F., Paunescu, L., Axinte, S. M., & Fiti, A. (2018). Influence of the color of bottle glass waste on the characteristics of foam glass produced in the microwave field. International Journal of Science and Engineering Investigations, 7(72), 95-100.
  • Hisham, N. A. N., Zaid, M. H. M., Aziz, S. H. A., & Muhammad, F. D. (2021). Comparison of foam glass-ceramics with different compositions derived from ark clamshell (ACS) and soda lime silica (SLS) glass bottles sintered at various temperatures. Materials, 14(3), 570. doi:10.3390/ma14030570
  • Hujova, M., Monich, P. R., Sedlacek, J., Hnatko, M., Kraxner, J., Galusek, D., & Bernardo, E. (2020). Glass-ceramic foams from alkali-activated vitrified bottom ash and waste glasses. Applied Sciences, 10(16), 5714. doi:10.3390/app10165714
  • Ibrahim, M. H., Mustaffar, M. I., Ismail, S. A. & Ismail, A. N. (2022). A review of the porous glass-ceramic production process, properties, and applications. Journal of Physics: Conference Series, 2169, 012042. doi:10.1088/1742-6596/2169/1/012042
  • Ibrahim, J. E. F. M., Tihtih, M., Kurovics, E., Gömze, L. A., & Kocserha, I. (2022). Innovative glass-ceramic foams prepared by alkali activation and reactive sintering of clay containing zeolite (zeolite-poor rock) and sawdust for thermal insulation. Journal of Building Engineering, 59, 105160. doi:10.1016/j.jobe.2022.105160
  • Ivanov, K. S. (2018). Preparation and properties of foam glass-ceramic from diatomite. Journal of the Wuhan University of Technology-Mater. Sci. Ed., 33, 273-277. doi:10.1007/s11595-018-1817-8
  • Jaya, N. A., Yun-Ming, L., Abdullah, M. M. A., Cheng-Yong, H., & Hussin, K. (2018). Effect of sodium hydroxide molarity on physical, mechanical, and thermal conductivity of metakaolin geopolymer. IOP Conf. Series: Materials Science and Engineering, 343, 012015. doi:10.1088/1757-899X/343/1/012015
  • Khamidulina, D. D., Nekrasova, S. A., & Voronin, K. M. (2017). Foam glass production from waste glass by compression. IOP Conf. Series: Materials Science and Engineering, 262, 012008. doi:10.1088/1757-899X/262/1/012008
  • Kim, Y., Sun, C., & Nuguzhinov, Z. (2017). Produce foam glass crystalline insulating material based on anthropogenic raw materials in Kazakhstan according to China’s experience. International Journal of Structural and Civil Engineering Research, 6(2), 159-163. doi:10.18178/ijscer.6.2.159-163
  • Lardizábal-G, D., Estrada-Guel, I., Montes, J. A., Ramirez-Balderrama, K. A., Soto-Figueroa, C., & Santos, R. R. (2020). Synthesis and characterization of low-cost glass-ceramic foams for insulating applications using glass and pumice wastes, Journal of Applied Research and Technology, 18(2), 44-50. doi:10.22201/icat.24486736e.2020.18.2.994
  • Ma, Q., Wang, Q., Luo, L., & Fan, C. (2018). Preparation of high-strength and low-cost glass ceramic foams with extremely high coal fly ash content. IOP Conf. Series: Materials Science and Engineering, 397, 012071. doi:10.1088/1757-899X/397/1/012071
  • Mustaffar, M. I., & Mahmud, M. H. (2018). Processing of highly-porous glass-ceramic from glass and fly ash wastes. AIP Conference Proceedings, 2031, 020010. doi:10.1063/1.5066966
  • Odewole, P. O. (2022). Properties of glass-ceramics foam based on granite dust-clay-maize cob composite as a sustainable building material. Journal of Sustainable Construction Materials and Technologies, 7(1), 1-8. doi:10.14744/jscmt.2022.07
  • Osfouri, M. & Simon, A. (2022). Study on the thermal conductivity and density of foam glass, Pollack Periodica, 18(1), 126-131. doi:10.1556/606.2022.00591
  • Owoeye, S. S., Mathew, G. O., Ovienmhanda, F. O., & Tunmilayo, S. O. (2020). Preparation and characterization of foam glass from waste container glasses and water glass for application in thermal insulations. Ceramic International, 46(8 Part B), 11770-11775. doi:10.1016/j.ceramint.2020.01.211
  • Parveez, B., Jamal, N. A., Anuar, H., Ahmad, Y., Aabid, A., & Baig, M. (2022). Microstructure and mechanical properties of metal foams fabricated via melt foaming and powder metallurgy technique: A review. Materials, 15(15), 5302. doi:10.3390/ma15155302
  • Paunescu, L., Axinte, S. M., Dragoescu, M. F., & Cosmulescu, F. (2020). Glass-ceramic foams are made of very high coal fly ash weight ratio by the direct microwave heating technique. Journal La Multiapp, 1(4), 33-42. doi:10.37899/journallamultiapp.v1i4.242
  • Sazegaran, H., & Nezhad S. M. M. (2021). Cell morphology, porosity, microstructure and mechanical properties of porous Fe–C–P alloys, International Journal of Minerals, Metallurgy and Materials, 28(2), 257-265. doi:10.1007/s12613-020-1995-2
  • Sedlačík, M., Nguyen, M., Opravil, T., & Sokolář, R. (2022). Preparation and Characterization of Glass-Ceramic Foam from Clay-Rich Waste Diatomaceous Earth. Materials, 15(4), 1384. doi:10.3390/ma15041384
  • Tian, Y., Li, S., Xu, C.-W.., Li, J.-W., Sun, S.-B., Qi, H., Ma, C.-X., & Cao, M.-P. (2016). Process and properties study of porous thermal insulation building materials based on a walnut shell. Advances in Engineering Research, 103, 262-268. doi:10.2991/icmea-16.2016.43
  • Vitola, L., Pundiene, I., Pranckeviciene, J., & Bajare, D. (2020). The impact of the amount of water used in the activation solution and the initial temperature of paste on the rheological behaviour and structural evolution of metakaolin-based geopolymer pastes. Sustainability, 12(19) 8216. doi:10.3390/su12198216
  • Yu, Q. (2022). Application of foam glass-ceramic composite thermal ınsulation material in traditional buildings. Journal of Chemistry, 2022, 9662805. doi:10.1155/2022/9662805
  • Yuan, H., Wu, H., & Guan, J. (2018). Synthesis of foam glass-ceramic from CRT panel glass using one-step powder sintering. IOP Conf. Series: Earth and Environmental Science, 186, 012020. doi:10.1088/1755-1315/186/2/012020
  • Zakaria, S. K., Zulkifli, M. L. H., Taib, M. A. A., Budiman, F., Mohamed, M., Ali, A., Yusoff, A. H., & Teo, P. T. (2020). Recycling of wood saw dust waste as green pore forming agent for porous ceramic, IOP Conf. Series: Earth and Environmental Science, 596, 012017. doi:10.1088/1755-1315/596/1/012017
  • Zhang, J., Zhang, X., Liu, B., Ekberg, C., Zhao, S., & Zhang, S. (2022). Phase evolution and properties of glass ceramic foams prepared by bottom ash, fly ash, and pickling sludge. International Journal of Minerals, Metallurgy and Materials, 29(3), 563-573. doi:10.1007/s12613-020-2219-5

A Sustainable Building Material Developed from Low-Temperature Sintering of Mining Waste with an Alkali-Silicate Solution

Year 2023, Volume: 10 Issue: 2, 140 - 148, 27.06.2023
https://doi.org/10.54287/gujsa.1245213

Abstract

The development of glass-ceramic foam has received significant attention in building and construction, given its potential for sustainability. This study investigated the low-temperature route of fabricating glass-ceramic foams from mining waste. The feasibility of one-step or chemical-aided sintering of glass-ceramic foams using granite powder, a naturally sourced mining waste, rather than using already heat-treated wastes such as glass and fly ash has been explored in this study. Glass-ceramic foam samples were synthesized from a homogenous blend of constant percentage by weight of granite-clay mix with varying amounts of alkali-silicate solution. The influence of the alkali-silicate solution on the physicomechanical and microstructural properties of the synthesized samples sintered at 850°C was investigated. The results showed water absorption of 9.5-33.3%, apparent porosity of 18.2-56.7%, bulk density of 1.7-1.91 g/cm3, and compressive strength of 20.7-26.3MPa. The glass-ceramic foam developed in this research can be suitably used for the thermal insulation of buildings.

References

  • Alemu, A. S., Yoon, J., Tafesse, M., Seo, Y.-S., Kim, H.-K., & Pyo, S. (2021). Practical considerations of porosity, strength, and acoustic absorption of structural pervious concrete, Case Studies in Construction Materials, 15, e00764. doi:10.1016/j.cscm.2021.e00764
  • Arivumangai, A., & Felixkala, T. (2014). Strength and durability properties of granite powder concrete. Journal of Civil Engineering Research, 4(2A), 1-6. doi:10.5923.c.jce.201401.01
  • ASTM C20-00 (2022). Standard test methods for apparent porosity, water absorption, apparent specific gravity, and bulk density of burned refractory brick and shapes by boiling water. ASTM International, West Conshohocken, PA. doi:10.1520/C0020-00R22
  • ASTM C240-97 (2017). Standard test methods of testing cellular glass insulation block. ASTM International, West Conshohocken, PA. doi:10.1520/C0240-97
  • Ayodele, O. J., Shittu, O. S., & Balogun, T. (2014). Heavy metal pollution assessment of granite quarrying operations at Ikole-Ekiti, Nigeria. International Journal of Environmental Monitoring and Analysis, 2(6), 333-339. doi:10.11648/j.ijema.20140206.16
  • Chen, C., Feng, K., Zhou, Y., & Zhou, H. (2017). Effect of sintering temperature on the microstructure and properties of foamed glass-ceramics prepared from high-titanium blast furnace slag and waste glass, International Journal of Minerals, Metallurgy and Materials. 24(8), 931-936. doi:10.1007/s12613-017-1480-8
  • da Silva, R. C., Kubaski, E. T., & Tebcherani, S. M. (2019). Glass foams produced by glass waste, sodium hydroxide, and borax with several pore structures using factorial design. International Journal of Applied Ceramic Technology, 17, 75-83. doi:10.1111/ijac.13210
  • Dragoescu, M. F., Paunescu, L., Axinte, S. M., & Fiti, A. (2018). Influence of the color of bottle glass waste on the characteristics of foam glass produced in the microwave field. International Journal of Science and Engineering Investigations, 7(72), 95-100.
  • Hisham, N. A. N., Zaid, M. H. M., Aziz, S. H. A., & Muhammad, F. D. (2021). Comparison of foam glass-ceramics with different compositions derived from ark clamshell (ACS) and soda lime silica (SLS) glass bottles sintered at various temperatures. Materials, 14(3), 570. doi:10.3390/ma14030570
  • Hujova, M., Monich, P. R., Sedlacek, J., Hnatko, M., Kraxner, J., Galusek, D., & Bernardo, E. (2020). Glass-ceramic foams from alkali-activated vitrified bottom ash and waste glasses. Applied Sciences, 10(16), 5714. doi:10.3390/app10165714
  • Ibrahim, M. H., Mustaffar, M. I., Ismail, S. A. & Ismail, A. N. (2022). A review of the porous glass-ceramic production process, properties, and applications. Journal of Physics: Conference Series, 2169, 012042. doi:10.1088/1742-6596/2169/1/012042
  • Ibrahim, J. E. F. M., Tihtih, M., Kurovics, E., Gömze, L. A., & Kocserha, I. (2022). Innovative glass-ceramic foams prepared by alkali activation and reactive sintering of clay containing zeolite (zeolite-poor rock) and sawdust for thermal insulation. Journal of Building Engineering, 59, 105160. doi:10.1016/j.jobe.2022.105160
  • Ivanov, K. S. (2018). Preparation and properties of foam glass-ceramic from diatomite. Journal of the Wuhan University of Technology-Mater. Sci. Ed., 33, 273-277. doi:10.1007/s11595-018-1817-8
  • Jaya, N. A., Yun-Ming, L., Abdullah, M. M. A., Cheng-Yong, H., & Hussin, K. (2018). Effect of sodium hydroxide molarity on physical, mechanical, and thermal conductivity of metakaolin geopolymer. IOP Conf. Series: Materials Science and Engineering, 343, 012015. doi:10.1088/1757-899X/343/1/012015
  • Khamidulina, D. D., Nekrasova, S. A., & Voronin, K. M. (2017). Foam glass production from waste glass by compression. IOP Conf. Series: Materials Science and Engineering, 262, 012008. doi:10.1088/1757-899X/262/1/012008
  • Kim, Y., Sun, C., & Nuguzhinov, Z. (2017). Produce foam glass crystalline insulating material based on anthropogenic raw materials in Kazakhstan according to China’s experience. International Journal of Structural and Civil Engineering Research, 6(2), 159-163. doi:10.18178/ijscer.6.2.159-163
  • Lardizábal-G, D., Estrada-Guel, I., Montes, J. A., Ramirez-Balderrama, K. A., Soto-Figueroa, C., & Santos, R. R. (2020). Synthesis and characterization of low-cost glass-ceramic foams for insulating applications using glass and pumice wastes, Journal of Applied Research and Technology, 18(2), 44-50. doi:10.22201/icat.24486736e.2020.18.2.994
  • Ma, Q., Wang, Q., Luo, L., & Fan, C. (2018). Preparation of high-strength and low-cost glass ceramic foams with extremely high coal fly ash content. IOP Conf. Series: Materials Science and Engineering, 397, 012071. doi:10.1088/1757-899X/397/1/012071
  • Mustaffar, M. I., & Mahmud, M. H. (2018). Processing of highly-porous glass-ceramic from glass and fly ash wastes. AIP Conference Proceedings, 2031, 020010. doi:10.1063/1.5066966
  • Odewole, P. O. (2022). Properties of glass-ceramics foam based on granite dust-clay-maize cob composite as a sustainable building material. Journal of Sustainable Construction Materials and Technologies, 7(1), 1-8. doi:10.14744/jscmt.2022.07
  • Osfouri, M. & Simon, A. (2022). Study on the thermal conductivity and density of foam glass, Pollack Periodica, 18(1), 126-131. doi:10.1556/606.2022.00591
  • Owoeye, S. S., Mathew, G. O., Ovienmhanda, F. O., & Tunmilayo, S. O. (2020). Preparation and characterization of foam glass from waste container glasses and water glass for application in thermal insulations. Ceramic International, 46(8 Part B), 11770-11775. doi:10.1016/j.ceramint.2020.01.211
  • Parveez, B., Jamal, N. A., Anuar, H., Ahmad, Y., Aabid, A., & Baig, M. (2022). Microstructure and mechanical properties of metal foams fabricated via melt foaming and powder metallurgy technique: A review. Materials, 15(15), 5302. doi:10.3390/ma15155302
  • Paunescu, L., Axinte, S. M., Dragoescu, M. F., & Cosmulescu, F. (2020). Glass-ceramic foams are made of very high coal fly ash weight ratio by the direct microwave heating technique. Journal La Multiapp, 1(4), 33-42. doi:10.37899/journallamultiapp.v1i4.242
  • Sazegaran, H., & Nezhad S. M. M. (2021). Cell morphology, porosity, microstructure and mechanical properties of porous Fe–C–P alloys, International Journal of Minerals, Metallurgy and Materials, 28(2), 257-265. doi:10.1007/s12613-020-1995-2
  • Sedlačík, M., Nguyen, M., Opravil, T., & Sokolář, R. (2022). Preparation and Characterization of Glass-Ceramic Foam from Clay-Rich Waste Diatomaceous Earth. Materials, 15(4), 1384. doi:10.3390/ma15041384
  • Tian, Y., Li, S., Xu, C.-W.., Li, J.-W., Sun, S.-B., Qi, H., Ma, C.-X., & Cao, M.-P. (2016). Process and properties study of porous thermal insulation building materials based on a walnut shell. Advances in Engineering Research, 103, 262-268. doi:10.2991/icmea-16.2016.43
  • Vitola, L., Pundiene, I., Pranckeviciene, J., & Bajare, D. (2020). The impact of the amount of water used in the activation solution and the initial temperature of paste on the rheological behaviour and structural evolution of metakaolin-based geopolymer pastes. Sustainability, 12(19) 8216. doi:10.3390/su12198216
  • Yu, Q. (2022). Application of foam glass-ceramic composite thermal ınsulation material in traditional buildings. Journal of Chemistry, 2022, 9662805. doi:10.1155/2022/9662805
  • Yuan, H., Wu, H., & Guan, J. (2018). Synthesis of foam glass-ceramic from CRT panel glass using one-step powder sintering. IOP Conf. Series: Earth and Environmental Science, 186, 012020. doi:10.1088/1755-1315/186/2/012020
  • Zakaria, S. K., Zulkifli, M. L. H., Taib, M. A. A., Budiman, F., Mohamed, M., Ali, A., Yusoff, A. H., & Teo, P. T. (2020). Recycling of wood saw dust waste as green pore forming agent for porous ceramic, IOP Conf. Series: Earth and Environmental Science, 596, 012017. doi:10.1088/1755-1315/596/1/012017
  • Zhang, J., Zhang, X., Liu, B., Ekberg, C., Zhao, S., & Zhang, S. (2022). Phase evolution and properties of glass ceramic foams prepared by bottom ash, fly ash, and pickling sludge. International Journal of Minerals, Metallurgy and Materials, 29(3), 563-573. doi:10.1007/s12613-020-2219-5
There are 32 citations in total.

Details

Primary Language English
Subjects Materials Engineering (Other)
Journal Section Metallurgical and Materials Engineering
Authors

Peter Oluwagbenga Odewole 0000-0002-0977-2993

Early Pub Date June 9, 2023
Publication Date June 27, 2023
Submission Date January 31, 2023
Published in Issue Year 2023 Volume: 10 Issue: 2

Cite

APA Odewole, P. O. (2023). A Sustainable Building Material Developed from Low-Temperature Sintering of Mining Waste with an Alkali-Silicate Solution. Gazi University Journal of Science Part A: Engineering and Innovation, 10(2), 140-148. https://doi.org/10.54287/gujsa.1245213